K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Áp dụng BĐT Cô-si:

\(x^2+9\geq 2\sqrt{9x^2}=6x\)

\(\Rightarrow S\geq 6x-x+3y+\frac{9}{x}+\frac{1}{y}=5x+3y+\frac{9}{x}+\frac{1}{y}(1)\)

Tiếp tục áp dụng BĐT Cô-si:

\(x+\frac{9}{x}\geq 2\sqrt{9}=6\)

\(y+\frac{1}{y}\geq 2\sqrt{1}=2\)

\(4x+2y=2(2x+y)\geq 14\)

Cộng theo vế: \(\Rightarrow 5x+3y+\frac{9}{x}+\frac{1}{y}\geq 22(2)\)

Từ \((1);(2)\Rightarrow S\geq 22\Leftrightarrow S_{\min}=22\)

Dấu bằng xảy ra khi $x=3,y=1$

NV
17 tháng 12 2020

Bạn xem lại đề bài, mặc dù bài này giải được ra kết quả cụ thể, nhưng chắc không ai cho đề như vậy cả

Sau khi tính toán thì \(P_{min}=4+2\sqrt{3}\) 

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{6\sqrt{3}-9}}{6};\dfrac{3+\sqrt{6\sqrt{3}-9}}{6}\right)\) và hoán vị

Nhìn thật kinh khủng, chẳng có lý gì cả.

Nếu điều kiện \(x+y=1\) thì biểu thức \(P=\dfrac{a}{x^3+y^3}+\dfrac{b}{xy}\) cần có tỉ lệ \(\dfrac{b}{a}\ge3\) để ra 1 kết quả đẹp mắt và bình thường

Ví dụ có thể cho đề là \(P=\dfrac{1}{3\left(x^3+y^3\right)}+\dfrac{1}{xy}\) hoặc \(P=\dfrac{1}{x^3+y^3}+\dfrac{4}{xy}\) gì đó :)

2 tháng 7 2018

Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :

\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\)\(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)

\(P_{MIN}=196."="\)\(x=y=z=\dfrac{1}{3}\)

2 tháng 7 2018

bunhia đc k bn

NV
1 tháng 3 2021

Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)

\(\Leftrightarrow x^2+2\le3x\)

Hoàn toàn tương tự ta có \(y^2+2\le3y\)

Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)

\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)

Đặt \(a=x+y-1\Rightarrow1\le a\le3\)

\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)

\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)

\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)

\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)