K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

A B C D H 8cm 6cm a) Do ABCD là HCN ( gt)

⇒ AD = BC = 6cm

⇒ SADB = \(\dfrac{1}{2}.AB.AD=\dfrac{1}{2}.8.6=24\left(cm^2\right)\)

b) Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại A có :

DB2 = AB2 + AD2

DB = \(\sqrt{8^2+6^2}\)

DB = 10 ( DB > 0)

Ta có : SABD = \(\dfrac{AH.BD}{2}\)

\(\dfrac{AH.BD}{2}\) = 24

⇒ AH = \(\dfrac{48}{DB}=\dfrac{48}{10}=4,8\left(cm\right)\)

c) Xét tam giác AHB và tam giác BCD có :

Góc AHB = Góc BCD ( = 90o)

Góc ABH = Góc BDC ( SLT )

⇒ Tam giác AHB ~ Tam giác BCD ( TH3)

d) Xét tam giác ADH và Tam giác BDA có :

Góc AHD = Góc BAD ( = 90o)

Góc BDA chung

⇒ Tam giác ADH ~ Tam giác BDA ( TH3 )

\(\dfrac{AD}{DB}=\dfrac{DH}{AD}\)

⇒ AD2 = DB.DH

23 tháng 5 2018

c? tg AHB ~ tg ?

23 tháng 1 2022

giúp😥😥

 

a: DB=10cm

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}=\widehat{BDA}\)

Do đó: ΔADH\(\sim\)ΔBDA

c: Xét ΔBAD vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)

hay \(AD^2=HD\cdot BD\)

19 tháng 5 2022

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

ABH^=BDC^

Do đó: ΔAHBΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

ADH^ chung

Do đó: ΔADHΔBDA

Suy ra: ADBD=HDDA

hay 

20 tháng 5 2022

hình nx bạn

6 tháng 5 2021

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD

a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có

góc HDA chung

=>ΔDHA đồng dạng với ΔDAB

=>DH/DA=DA/DB

=>DA^2=DH*DB

b: DB=căn 8^2+6^2=10cm

DH=6^2/10=3,6cm

a: Xet ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AD}{BD}=4,8\left(cm\right)\)

c: \(HB=\dfrac{AB^2}{BD}=6,4\left(cm\right)\)

\(S=\dfrac{AH\cdot HB}{2}=2,4\cdot6,4=15,36\left(cm^2\right)\)

29 tháng 4 2016

Áp dụng công thức mà làm nhé!