ccTìm x biết
a) \(3x^2\)-x-10=0
b) 5x+2 >_0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x-3>5x+10
=>-3x>13
hay x<-13/3
b: \(2x^2-3x>x+7x\)
\(\Leftrightarrow2x^2-10x>0\)
=>2x(x-5)>0
=>x>5 hoặc x<0
c: (x-1)(x+3)<0
=>x+3>0 và x-1<0
=>-3<x<1
a) \(2x-3>5x+10\) \(\Leftrightarrow\) \(2x-5x>10 +3\Leftrightarrow-3x>13\Leftrightarrow x< \dfrac{13}{-3}\) vậy \(x< \dfrac{13}{-3}\)
b) \(2x^2-3x>x+7x\) \(\Leftrightarrow\) \(2x^2-3x-x-7x>0\)
\(\Leftrightarrow\) \(2x^2-11x>0\) \(\Leftrightarrow\) \(x\left(2x-11\right)>0\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>0\\2x-11>0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>0\\x>\dfrac{11}{2}\end{matrix}\right.\)
\(\Rightarrow\) \(x>\dfrac{11}{2}\) vậy \(x>\dfrac{11}{2}\)
c) \(\left(x-1\right)\left(x+3\right)< 0\) \(\Leftrightarrow\) \(x^2+3x-x-3< 0\)
\(\Leftrightarrow\) \(x^2+2x-3>0\) \(\Leftrightarrow\) \(x^2-x+3x-3>0\)
\(\Leftrightarrow\) \(x\left(x-1\right)+3\left(x-1\right)\) \(\Leftrightarrow\) \(\left(x+3\right)\left(x-1\right)\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x>1\\x>-3\end{matrix}\right.\) \(\Rightarrow\) \(x>1\) vậy \(x>1\)
a: Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b: Ta có: \(x^2-5x-6=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\)
a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)
\(S=\left\{1;\frac{1}{3}\right\}\)
b)\(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(S=\left\{2;-3\right\}\)
\(\text{Tìm x:}\)
\(a.x\left(x-1\right)-3x+3x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
\(b.3x\left(x-2\right)+10-5x=0\)
\(3x^2-6x+10-5x=0\)
\(3x^2-11x+10=0\)
\(3x^2-11x=-10\)(bn xem lại đề nhé)
\(c.x^3-5x^2+x-5=0\)
\(x^3-5x^2+x=5\)
\(d.x^4-2x^3+10x^2-20x=0\)
bài 1:phân tích thành phân tử
a> x^2-6x-y^2+9
= (x-3)^2 -y^2
= (x-3 -y) (x-3+y)
b>x^2-xy-8x+8y
= x(x-y) - 8(x-y)
= (x-8) (x-y)
c>25-4x^2-4xy-y^2
= 5^2 - (2x + y)^2
= (5 - 2x -y) (5 +2x+y)
d>xy-xz-y+z
= x(y-z) - (y-z)
= (x-1) (y-z)
e>x^2-xz-yz+2xy+y^2
= (x+y)^2 - z(x+y)
= (x+y-z) (x+y)
g>x^2-4xy+4y^2-z^2-4zt-4t^2
= (x-2y)^2 - (z + 2t)^2
= (x-2y -x-2t) (x-2y + z +2t)
bài 2:tìm X bt
a>x.(x-1)-3x+3x=0
x (x-1) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x=0 và x=1
b>3x.(x-2)+10-5x=0
3x(x-2) - 5 (x-2)=0
(3x-5) (x-2) =0
\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)
c>x^3-5x^2+x-5=0
x^2 (x-5) + (x-5) =0
(x^2 +1)(x-5) =0
\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)
Vậy x=5
d>x^4-2x^3+10x^2-20x=0
x^3 (x-2) + 10x(x-2) =0
(x^3 + 10x) (x-2) =0
x(x^2 + 10) (x-2) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)
Vậy x=0 và x=2
\(x-4\)
\(\left(\sqrt{2}\right)^2-4\)
\(=\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)\)
a) x2-3x+10>0
Có x2-3x+10=x2-2x\(\frac{3}{2}\)+\(\frac{9}{4}\)+\(\frac{31}{4}\)=(x-\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0 với mọi x
=> x2-3x+10>0
b) 3x2+5x+20>0
3x2+5x+20=3(x2+\(\frac{5}{3}\)x+\(\frac{20}{3}\))=3(x2+2.x.\(\frac{5}{6}\)+\(\frac{25}{36}\)+\(\frac{215}{36}\))=3(x+\(\frac{5}{6}\))2+\(\frac{215}{12}\)>0 với mọi x
=>3x2+5x+20 >0
c) -2x2-5x-15<0
-2x2-5x-15=-2(x2+\(\frac{5}{2}\)x+\(\frac{15}{2}\))=-2(x2+2.x.\(\frac{5}{4}\)+\(\frac{25}{20}\)+\(\frac{25}{4}\))=-2(x+\(\frac{5}{4}\))-\(\frac{25}{2}\)<0 với mọi x
-2x2-5x-15<0
a) \(3x^2-x-10=0\)
<=> \(3x^2-6x+5x-10=0\)
<=> (\(3x^2-6x\))+(\(5x-10\)) = 0
<=> \(3x\left(x-2\right)\)+\(5\left(x-2\right)\) = 0
<=> \(\left(x-2\right)\left(3x+5\right)=0\)
<=> x - 2 =0 hoặc 3x +5 = 0
* x - 2 = 0 * 3x + 5 = 0
<=> x = 2 <=> 3x =-5
<=> x = \(\dfrac{-5}{3}\)
Vậy x = 2 hoặc x = \(\dfrac{-5}{3}\)
b) 5x +2 \(\ge\)0
<=>5x \(\ge\) -2
<=> x \(\ge\)\(\dfrac{-2}{5}\)
Vậy x \(\ge\)\(\dfrac{-2}{5}\)
a) 3x2 - x - 10 = 0
⇔ 3x2 + 5x - 6x - 10 = 0
⇔ x( 3x + 5) - 2( 3x + 5) = 0
⇔ ( x - 2)( 3x + 5) = 0
⇔ x = 2 hoặc : x = \(\dfrac{-5}{3}\)
KL....
b) 5x + 2 ≥ 0
⇔ x ≥ \(\dfrac{-2}{5}\)
KL....