K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

Giải:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{1}{c}+\dfrac{1}{a+b+c}=0\)

\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Vậy ...

18 tháng 5 2018

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

⇔ bc(a+b+c) + ac(a+b+c) + ab(a+b+c) = abc (quy đồng và khử mẫu vì a,b,c ≠ 0)

\(\Leftrightarrow abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc=abc\)

\(\Leftrightarrow bc\left(b+c\right)+a\left(c^2+2bc+b^2\right)+a^2\left(b+c\right)=0\)(chuyển abc ở vế phải sang chỉ còn 2abc rồi đặt nhân tử chung)

\(\Leftrightarrow\left(b+c\right)\left(bc+ab+ac+a^2\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left[b\left(a+c\right)+a\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\left(đpcm\right)\)

17 tháng 8 2020

\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)

\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)

Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM

2 tháng 1 2020

Câu hỏi của Nguyễn Thị Hồng Nhung - Toán lớp 7 - Học toán với OnlineMath

26 tháng 10 2021

tại sao con cò lại bé bé

5 tháng 7 2017

Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)

Vậy đẳng thức được chứng minh