Chứng minh rằng a8 - a5 + a2 - a + 1 > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: Tồn tại 1 số hoặc 1 tổng các số chia hết cho 10 thì bài toán giải quyết xong
TH2:Không tồn tại 1 số hoặc 1 tổng các số chia hết cho 10
Xét 10 tổng:
S1=a
S2=a+a1
....
S10=a+a1+...+a9
10 tổng trên chia 10 dc 10 số dư
1 tổng khi chia cho 10 đc 9 khả năng dư từ 1 đến 9
Mà 10 chia 9 =1 dư1
Theo nguyên lý Dirichlet thì tồn tại ít nhất 1+1=2 tổng có cùng số dư khi chia 10
Tức là hiệu 2 tổng chia hết cho 10
Giả sử 2 hiệu đó là Sm và Sn (m,n thuộc N*; m,n _<10; m>n)
Ta có Sm-Sn chia hết cho 10
=> a+a1+..+am-a-a1-..-an chia hết cho 10
=> a(n+1) +a(n+2) +... am chia hết cho 10
Vậy đpcm
Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)
\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)
\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)
\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)
\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)
\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)
mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm
=> dpcm
Bạn tự viết ra và cân bằng phương trình nhé!
\(A:O_2\\ A_1:Fe_2O_3\\ A_2:SO_2\\ A_3:SO_3\\ A_4:H_2SO_4\\ A_5:Fe_2\left(SO_4\right)_3\\ A_6:H_2\\ A_7:Fe\\ A_8:Fe_3O_4\\ A_9:FeSO_4\)
Vì là lớp dưới nên em chỉ biết làm thế này thoy :((((
Ta xét ba trường hợp với mọi a :
+) a = 0 => a8 - a5 + a2 - a + 1 = 1 > 0 ( đúng )
+) a > 0 => a8 ; a5 ; a2 ; a đều lớn hơn 0
Vì a8 > a5 ; a2 > a
=> a8 - a5 + a2 - a > 0
=> a8 - a5 + a2 - a + 1 > 1 > 0 ( đúng )
+) Với a < 0 => a8 > 0 ; a5 < 0 ; a2 > 0 ; a < 0
=> a8 - a5 > 0 ( do a5 < 0 và a8 > 0) và a2 - a > 0 ( do a2 > 0 ; a < 0 )
=> a8 - a5 + a2 - a + 1 > 0
Từ 3 trường hợp trên => a8 - a5 + a2 - a + 1 luôn lớn hơn 0 với mọi a
a8 - a5 + a2 - a + 1
= a.a7 - a.a4 + a.a - a + 1
= a.(a7- a4 + a - a) + 1
= a.a3+1
--> a8 - a5 + a2 - a + 1 > 0.
Mình cũng không chắc, thông cảm nhé~
Học tốt nhaa~~