1, Cho phương trình \(x^2+2\left(m+1\right)x+2m-11=0\)
a, Tìm m để phương trình có 1 nghiệm lớn hơn 1 và nghiệm nhỏ hơn 1
b, Tìm m để phương trình trên có 2 nghiệm cùng nhỏ hơn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(-8\right)^2-4\cdot\left(-3\right)\cdot\left(m-1\right)\)
\(=64+12\left(m-1\right)\)
=64+12m-12
=12m+52
a: Để phương trình có hai nghiệm phân biệt nhỏ hơn 7 thì
\(\left\{{}\begin{matrix}12m+52>0\\8< 14\end{matrix}\right.\Leftrightarrow m>-\dfrac{13}{4}\)
b: Để phương trình có hai nghiệm phân biệt lớn hơn 7 thì \(\left\{{}\begin{matrix}12m+52>0\\8>14\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
\(\Delta=4\left(m+1\right)^2-4\cdot\left(2m-11\right)\cdot1=4m^2+8m+4-8m+44=4m^2+48>0\Rightarrow\)Phương trình có hai nghiệm phân biệt
a) x1\(=\frac{-b-\sqrt{\Delta}}{2a}\) x2\(=\frac{-b+\sqrt{\Delta}}{2a}\)
Vì x1 < x2 nên theo yêu cầu đề x1 < 1; x2 > 1
* x2>1 \(\Rightarrow\frac{-b+\sqrt{\Delta}}{2a}>1\Rightarrow\sqrt{\Delta}>2a+b\Rightarrow\sqrt{\Delta}>2a+b\Rightarrow\Delta>\left(2a+b\right)^2=4a^2+4ab+b^2=4+4\cdot2\left(m+1\right)+4\left(m+1\right)^2\)
\(4\left(m+1\right)^2-4\left(2m-11\right)-4\left(m+1\right)^2-4-8\left(m+1\right)>0\Rightarrow-16m+56>0\Rightarrow-16m>-32\Rightarrow m>2\)tương tự với x1 : m>2
Vậy để pt có 1 nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1 thì m >2
b) x1<2
\(\Rightarrow\frac{-b-\sqrt{\Delta}}{2a}< 2\Rightarrow\sqrt{\Delta}>-\left(4a+b\right)\Rightarrow\Delta>\left(4a+b\right)^2=16a^2+b^2+8ab=16+4\left(m+1\right)^2+8\cdot2\left(m+1\right)\)
\(\Rightarrow4\left(m+1\right)^2-4\left(2m-11\right)-16-16\left(m+1\right)-4\left(m+1\right)^2>0\Rightarrow-24m>-12\Rightarrow m>\frac{1}{2}\)
Tương tự với x2 : m>1/2
Vậy để phương trình có hai nghiệm đều bé hơn 2 thì \(2\ge m>\frac{1}{2}\)
Xin lỗi bạn mình mới học lớp 5 thôi
Thông cảm nha
Xin lỗi bạn nhiều
a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)
\(=16-40\left(m-1\right)\)
\(=16-40m+40\)
=-40m+56
Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)
hay m<7/5
b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
Xét \(\Delta=4\left(m+1\right)^2-4.2m=4m^2+4>0\forall m\)
=>Pt luôn có hai nghiệm pb
Pt có hai nghiệm nhỏ hơn 3 \(\Rightarrow x_1< 3;x_2< 3\)
\(\Leftrightarrow\left(x_1-3\right)\left(x_2-3\right)>0\)
\(\Leftrightarrow x_1x_2-3\left(x_1+x_2\right)+9>0\)
\(\Leftrightarrow2m-3.2\left(m+1\right)+9>0\)
\(\Leftrightarrow-4m+3>0\) \(\Leftrightarrow m< \dfrac{3}{4}\)
Vậy...
\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)
Để pt có 2 nghiệm trái dấu thì
\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)
Câu hỏi của bạn khá giống câu hỏi của bạn Hoàng Thị Anh Thư, bạn có thể qua đấy tham khảo để giải :D