K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

\(\dfrac{400}{x}+\dfrac{400}{x+10}=18\)

\(\dfrac{400\left(x+10\right)}{x\left(x+10\right)}+\dfrac{400x}{x\left(x+10\right)}=\dfrac{18x\left(x+10\right)}{x\left(x+10\right)}\)

⇒ 400( x + 10 ) + 400x = 18x( x + 10 )

⇒ 400x + 4000 + 400x = 18x\(^2\) + 180x

⇒ 18x\(^2\) - 620x - 4000 = 0

⇒ ( x - 40 )( x + \(\dfrac{50}{9}\) ) = 0

⇒ x = 40 hoặc x = \(-\dfrac{50}{9}\)

16 tháng 5 2018

bạn ơi, mình chưa hiểu bước 5 cho lắm, giải thích hộ mk đc k ạ

21 tháng 9 2021

Đặt \(\dfrac{1}{y-1}=a\), hpt tở thành

\(\left\{{}\begin{matrix}\dfrac{5}{x+1}+a=10\\\dfrac{1}{x-2}+3a=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15}{x+1}+3a=30\left(1\right)\\\dfrac{1}{x-1}+3a=18\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)-\left(2\right)\), ta được:

\(\dfrac{15}{x+1}-\dfrac{1}{x-1}=12\\ \Leftrightarrow\dfrac{15x-15-x-1}{\left(x-1\right)\left(x+1\right)}=12\\ \Leftrightarrow12x^2-12=14x-16\\ \Leftrightarrow12x^2-14x+4=0\\ \Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Với \(x=\dfrac{1}{2}\Leftrightarrow\dfrac{10}{3}+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{10y-7}{3\left(y-1\right)}=10\)

\(\Leftrightarrow30y-30=10y-7\Leftrightarrow y=\dfrac{23}{20}\)

Với \(x=\dfrac{2}{3}\Leftrightarrow3+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{1}{y-1}=7\Leftrightarrow7y-7=1\Leftrightarrow y=\dfrac{8}{7}\)

Vậy \(\left(x;y\right)=\left\{\left(\dfrac{1}{2};\dfrac{23}{20}\right);\left(\dfrac{2}{3};\dfrac{8}{7}\right)\right\}\)

\(\Leftrightarrow\dfrac{4x-3x}{72}=\dfrac{3}{2}\\ \Leftrightarrow\dfrac{x}{72}=\dfrac{3}{2}\\ \Leftrightarrow x=108\)

22 tháng 3 2022

chi tiết được không bạn

16 tháng 2 2023

22 tháng 3 2021

$ĐKXĐ:x \neq -4;-5;-6;-7$

$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$

$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$

$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$

$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$

$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$

$⇔x^2+11x+28=54$

$⇔x^2+11x-26=0$

$⇔x^2-2x+13x-26=0$

$⇔(x-2)(x+13)=0$

$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)

Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$

 

\(\Leftrightarrow3x\left(x-10\right)=60x-60\left(x-10\right)\)

\(\Leftrightarrow3x\left(x-10\right)=600\)

\(\Leftrightarrow x^2-10x-200=0\)

=>(x-20)(x+10)=0

=>x=20 hoặc x=-10

26 tháng 1 2022

\(\dfrac{60}{x-10}-\dfrac{60}{x}=\dfrac{3}{10}\)đk : x khác 10 ; 0 

\(\Leftrightarrow600x-600\left(x-10\right)=3x\left(x-10\right)\)

\(\Leftrightarrow3x^2-30x-6000=0\Leftrightarrow x=50;x=-40\left(tm\right)\)

25 tháng 5 2021

Đk:\(x\ge0\)

Pt \(\Leftrightarrow2\sqrt{x}+5=36+3\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow-\sqrt{x}=22\) (vô nghiệm)

Vậy phương trình vô nghiệm

\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10

\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)

⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000

⇔ 7975\(x\) = 1196250

⇔ \(x\) = \(\dfrac{1196250}{7975}\)

\(x \) = 150

 

a: =>\(\dfrac{5x-15+4x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{1}{x}\)

=>\(\dfrac{9x-23}{\left(x-2\right)\left(x-3\right)}=\dfrac{1}{x}\)

=>9x^2-23x=x^2-5x+6

=>8x^2-18x-6=0

=>\(x=\dfrac{9\pm\sqrt{129}}{8}\)

b: =>\(\dfrac{12x+1}{11x-4}=\dfrac{20x+17-20x+8}{18}=\dfrac{25}{18}\)

=>216x+18=275x-100

=>-59x=-118

=>x=2

17 tháng 10 2021

Đk: \(x\ne5;x\ne-10\)

Pt: \(\Rightarrow\dfrac{\left(x-2\right)\left(x+5\right)}{x^2}-\dfrac{40}{\left(x-5\right)\left(x+10\right)}=0\)

     \(\Rightarrow\left(x-2\right)\left(x+5\right)\left(x-5\right)\left(x+10\right)-40x^2=0\)

     \(\Rightarrow\left(x^2-12x+20\right)\left(x^2-25\right)-40x^2=0\)

     \(\Rightarrow x^4-12x^3-45x^2+300x=500\)

     \(\Rightarrow\left\{{}\begin{matrix}x=5\left(loại\right)\\x=-5\left(tm\right)\end{matrix}\right.\)