K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

31 tháng 10 2021

Mn ơi ai bt làm câu nào thì giúp mik cậu đó với !!

31 tháng 10 2021

1. a. 

Ta có: 128 = (124)2 = 207362

Ta thấy: 20736 > 81

=> 128 > 812

(Các câu khác cũng tương tự nhé.)

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

7 tháng 6 2017

Giải:

Ta có:

\(\left(a+b+c+d\right)^2=\) \(\left[\left(a+c\right)+\left(b+d\right)\right]^2\)

\(\ge4\left(a+c\right)\left(b+d\right)\) \(=4\left(ab+bc+cd+da\right)\)\(=4\)

\(\Leftrightarrow a+b+c+d\) \(\ge2\left(a,b,c,d>0\right)\)

\(\Rightarrow\dfrac{a^3}{b+c+d}+\dfrac{b+c+d}{8}\) \(+\dfrac{b}{6}+\dfrac{1}{12}\ge\dfrac{2a}{3}\)

Tương tự ta cũng có:

\(\dfrac{b^3}{a+c+d}+\dfrac{a+c+d}{8}+\dfrac{b}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2b}{3}\)

\(\dfrac{c^3}{a+b+d}+\dfrac{a+b+d}{8}+\dfrac{c}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2c}{3}\)

\(\dfrac{d^3}{a+b+c}+\dfrac{a+b+c}{8}+\dfrac{d}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2d}{3}\)

Cộng vế theo vế các BĐT trên ta có:

\(P\ge\dfrac{a+b+c+d}{3}-\dfrac{1}{3}\ge\) \(\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\dfrac{1}{2}\)

7 tháng 6 2017

undefined

NV
30 tháng 8 2021

\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)

Tương tự và cộng lại:

\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)

\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)

Mặt khác ta có:

\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)

\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)

NV
23 tháng 1 2021

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)