Bài 1: Chứng minh rằng: với \(a>\dfrac{1}{8}\) thì số sau là 1 số nguyên:
\(x=\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}\)
Bài 2: Cho các số thực x,y thỏa mãn: \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Tính giá trị biểu thức: \(A=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\)
Mọi người ơi giúp Mank với, sắp phải nộp rùi :3
Bài 2 mk có làm đc rồi, mk ra kết quả là 1, có j các bạn check giúp mk nhé