Tìm P:
P= (21x^2+6x)^2017 biết x=√(√3-√5-√13+4√3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x=\sqrt{\sqrt{3}-\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{\sqrt{3}-\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)
\(=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\sqrt{3}+1}=1\)
\(\Rightarrow A=\left(21x^2+6x\right)^{2018}=\left(21\left(1\right)^2+6.1\right)^{2018}=27^{2018}\)
a) \(\left(x-\sqrt{3}\right)^2=\frac{3}{4}\)
\(\Leftrightarrow x-\sqrt{3}=\pm\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{3}=-\frac{\sqrt{3}}{2}\\x-\sqrt{3}=\frac{\sqrt{3}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{2}\\\frac{3\sqrt{3}}{2}\end{cases}}\)
Nghiệm cuối cùng là : \(x_1=\frac{\sqrt{3}}{2};x_2=\frac{3\sqrt{3}}{2}\)
b) || 6x - 2 | - 5 | = 2016. x -2017
<=> || 6x - 2 | -5 | -2016x = -2017
<=> \(\orbr{\begin{cases}\left|6x-2\right|-5-2016.x=-2017,\left|6x-2\right|-5\ge0\\-\left(\left|6x-2\right|-5\right)-2016x=-2017,\left|6x-2\right|-5< 0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1,x\in\left[-\infty,-\frac{1}{2}\right];\left[\frac{7}{6};+\infty\right]\\x=\frac{1012}{1011},x\in\left[-\frac{1}{2},\frac{7}{6}\right]\end{cases}}\)
<=>\(\orbr{\begin{cases}x\in\varnothing\\x=\frac{1012}{1011}\end{cases}}\)
Vậy x = \(\frac{1012}{1011}\)
1/
a. \(3x\left(5x^2-2x-1\right)\)
\(=15x^3-6x^2-3x\)
b. \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c. \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2\)
a) thiếu đề
b) \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
\(15x-63x^2-15+63x+63x^2-35x+36x-20=44\)
\(79x-35=40\)
\(79x=75\)
\(x=\frac{75}{79}\)
\(x=\sqrt{\sqrt{3}-\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}\)
=1
Thay x=1 vào P, ta được:
\(P=\left(21\cdot1^2+6\cdot1\right)^{2017}=27^{2017}\)