K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7

Lời giải:

Nếu $n$ lẻ thì:

$S=a+(a^2+a^3)+(a^4+a^5)+....+(a^{n-1}+a^n)$

$=a+a^2(1+a)+a^4(1+a)+....+a^{n-1}(1+a)$
$=a+(1+a)(a^2+a^4+....+a^{n-1})$

$=(a+1)+(1+a)(a^2+a^4+...+a^{n-1})-1$

$=(a+1)(1+a^2+a^4+...+a^{n-1})-1\not\vdots a+1$

Nếu $n$ chẵn thì:

$S=(a+a^2)+(a^3+a^4)+....+(a^{n-1}+a^{n})$

$=a(1+a)+a^3(1+a)+....+a^{n-1}(1+a)$
$=(1+a)(a+a^3+...+a^{n-1})\vdots a+1$

Vậy với giá trị $n$ chẵn thì yêu cầu đề bài được thỏa mãn.

26 tháng 10 2016

Ta thấy:

\(a+a^2=a.\left(a+1\right)⋮a+1\)

\(a^3+a^4=a^3.\left(a+1\right)⋮a+1\)

...

Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1

Do đó, với n chẵn thì S chia hết cho a + 1

12 tháng 12 2020

Ta thấy:

a+a^2=a.\left(a+1\right)⋮a+1

a^3+a^4=a^3.\left(a+1\right)⋮a+1

...

Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1

Do đó, với n chẵn thì S chia hết cho a + 1

12 tháng 12 2020

Ta thấy:

a+a^2=a.\left(a+1\right)⋮a+1

a^3+a^4=a^3.\left(a+1\right)⋮a+1

...

Như vậy, cứ 2 số trong tổng S thì có tổng chia hết cho a + 1

Do đó, với n chẵn thì S chia hết cho a + 1

6 tháng 10 2018

\(S=a+a^2+...+a^n\)

\(a.S=a^2+a^3+...+a^{n+1}\)

\(a.S-S=a^2+a^3+...+a^{n+1}-\left(a+a^2+...+a^n\right)\)

\(S\left(a-1\right)=a^{n+1}-a\)

\(S=\dfrac{a\left(a^n-1\right)}{a-1}\)

Để \(S⋮\left(a+1\right)\Leftrightarrow\dfrac{a\left(a^n-1\right)}{\left(a-1\right)\left(a+1\right)}=\dfrac{a\left(a^n-1\right)}{a^2-1}\)

khi \(\left(a^n-1\right)⋮\left(a^2-1\right)\Rightarrow n=2\)

a=0 chac chan luon

9 tháng 3 2018

trả lời nhanh giúp mình nhá