cho P(x) = ax^2 + bx + c và 5a - b + c = 0 .cmr: P(1) × P(-3) bé hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q(-3)=9x-3b+x ;Q(1)=a+b+c
lấy Q(-3)+Q(1)=10a-2b+2c=2(5a-b+c)=2.0=0(vì 5a-b-c=0)
mà 0=0=)Q(-3)+Q(1)< hoặc =0 =)Q(-3)và Q(1)đối nhau
mà 2 số đối nhau luôn có 1 số âm và 1 số dương
mà số âm. số dương bằng số âm mà số âm luôn bé hơn 0 nên =)Q(-3).Q(1) < hoặc = 0
Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c
f(2) = a.22 + b.2 +c = 4a + 2b + c
Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0
=> f(-1) = -f(2)
Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0
Vậy....
Bài làm:
Ta có: \(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)
Ta có: \(Q\left(2\right).Q\left(-1\right)=-Q\left(-1\right).Q\left(-1\right)=-Q\left(-1\right)^2\le0\)
=> đpcm
Học tốt!!!!