tìm x biết: (x+1)3 - (x-1)3 - (6x-1)2 = -10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+3\right)\left(x+1\right)-x\left(x-5\right)=11\)
\(\Leftrightarrow x^2+x+3x+3-x^2+5x=11\)
\(\Leftrightarrow9x+3=11\)
\(\Leftrightarrow9x=11-3\)
\(\Leftrightarrow9x=8\)
\(\Leftrightarrow x=\dfrac{8}{9}\)
b) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow\left(8x-24x^2+2-6x\right)+\left(24x^2-60x-4x+10\right)=-50\)
\(\Leftrightarrow2x-24x^2+2+24x^2-64x+10=-50\)
\(\Leftrightarrow-62x+12=-50\)
\(\Leftrightarrow-62x=-50-12\)
\(\Leftrightarrow-62x=-62\)
\(\Leftrightarrow x=\dfrac{-62}{-62}\)
\(\Leftrightarrow x=1\)
a) \(\left(x+3\right)\left(x+1\right)-x\left(x-5\right)=11\)
\(x^2+x+3x+3-x^2+5x=11\)
\(x+8x+3=11\)
\(x+8x=8\)
\(x\left(8+1\right)=8\)
\(x=\dfrac{8}{9}\)
b) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(8x-24x^2+2-6x+24x^2-60x-4x+10=-50\)
\(-62x+12=-50\)
\(-62x=-62\)
\(x=1\)
Ta cos : -(x + 3)(x - 4) + (x - 1)(x + 1) = 10
<=> -(x2 - x -12) + x2 + 1 = 10
<=> -x2 + x + 12 + x2 + 1 = 10
<=> x + 13 = 10
=> x = 10 - 13
=> x = -3
a) \(\frac{-x}{2}+\frac{2x}{3}+x+\frac{1}{4}+2x+\frac{1}{6}=\frac{3}{8}.\)
\(\frac{-x}{2}+\frac{2x}{3}+3x+\frac{5}{12}=\frac{3}{8}\)
\(x.\left(-\frac{1}{2}+\frac{2}{3}+3\right)+\frac{5}{12}=\frac{3}{8}\)
\(x\cdot\frac{19}{6}=-\frac{1}{24}\)
x = -1/76
b) \(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2.\left(2x+1\right)}-\frac{2.3}{3.\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
=> 2x + 1 = 13
2x = 12
x = 6
bài 5:
1: \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{12x^3y^2:6xy^2}{18xy^5:6xy^2}=\dfrac{2x^2}{3y^3}\)
2: \(\dfrac{10xy-5x^2}{2x^2-8y^2}=\dfrac{5x\cdot2y-5x\cdot x}{2\left(x^2-4y^2\right)}\)
\(=\dfrac{5x\left(2y-x\right)}{-2\left(x+2y\right)\left(2y-x\right)}=\dfrac{-5x}{2\left(x+2y\right)}\)
3: \(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\dfrac{\left(x^2-xy\right)-\left(x-y\right)}{\left(x^2+xy\right)-\left(x+y\right)}\)
\(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)
4: \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{\left(6x^2-6\right)\left(x^3-1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)^2}{6\left(x^2-1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{6\left(x-1\right)\left(x+1\right)\cdot\left(x^2+x+1\right)}\)
\(=\dfrac{1}{6\left(x^2+x+1\right)}\)
5: \(\dfrac{2x^2-7x+3}{1-4x^2}\)
\(=-\dfrac{2x^2-7x+3}{4x^2-1}\)
\(=-\dfrac{2x^2-6x-x+3}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{2x\left(x-3\right)-\left(x-3\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=-\dfrac{\left(x-3\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{-x+3}{2x+1}\)
Bài 3:
1: \(9x^3-xy^2\)
\(=x\cdot9x^2-x\cdot y^2\)
\(=x\left(9x^2-y^2\right)\)
\(=x\left(3x-y\right)\left(3x+y\right)\)
2: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
3: \(x^2-3xy-6x+18y\)
\(=\left(x^2-3xy\right)-\left(6x-18y\right)\)
\(=x\left(x-3y\right)-6\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-6\right)\)
4: \(6xy-x^2+36-9y^2\)
\(=36-\left(x^2-6xy+9y^2\right)\)
\(=36-\left(x-3y\right)^2\)
\(=\left(6-x+3y\right)\left(6+x-3y\right)\)
5: \(x^4-6x^2+5\)
\(=x^4-x^2-5x^2+5\)
\(=x^2\left(x^2-1\right)-5\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x^2-1\right)\)
\(=\left(x^2-5\right)\left(x-1\right)\left(x+1\right)\)
6: \(9x^2-6x-y^2+2y\)
\(=\left(9x^2-y^2\right)-\left(6x-2y\right)\)
\(=\left(3x-y\right)\left(3x+y\right)-2\left(3x-y\right)\)
\(=\left(3x-y\right)\left(3x+y-2\right)\)
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
1: Ta có: \(4x^2-36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)
\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)
\(\Leftrightarrow2x=10\)
hay x=5
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)