Cho \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\). Chứng minh B<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+3}+...+\frac{1}{1+2+3+...+99}\)
\(A=\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{99\left(99+1\right)}{2}}\)
\(A=\frac{2}{2\left(2+1\right)}+\frac{2}{3\left(3+1\right)}+\frac{2}{4\left(4+1\right)}+...+\frac{2}{99\left(99+1\right)}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(A=2.\frac{49}{100}\)
\(A=\frac{49}{50}\)
Lại có :
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
\(\frac{1}{4^2}>\frac{1}{4.5}\)
\(............\)
\(\frac{1}{49^2}>\frac{1}{49.50}\)
\(\Rightarrow\)\(B=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}>1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(B>1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(B>1+\frac{1}{2}-\frac{1}{50}\)
\(B>1+\frac{12}{25}=\frac{37}{25}=\frac{74}{50}>\frac{49}{50}=A\)
\(\Rightarrow\)\(B>A\)
Vậy \(A< B\)
Chúc bạn học tốt ~
a)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)
\(=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
\(=\frac{16+4+1}{64}\)
\(=\frac{21}{64}< \frac{1}{3}\)(đpcm)
b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3A-A=\(1-\frac{1}{3^{99}}\)
2A=\(1-\frac{1}{3^{99}}\)
vì 2A<1
=> A<\(\frac{1}{2}\)