cho hình chữ nhật ABCD có AB=8cm, BC= 6cm . Qua B kẻ đường thẳng a vuông góc với BD , a cắt DC tại E.
a) ΔBCE∼ΔDBE
b) Kẻ đường cao CH của tam giác BCE. Chứng minh BC2=CH.BD
c) Tính độ dài đoạn thẳng BH và BE
d) Tính tỉ số diện tích ΔCEH và ΔDEB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác BDE và tam giác DCE có:
+)chung góc E
+)góc BDE=DCE=90độ
suy ra tam giác BDE đồng dạng tam giác DCE(g-g)
b,Xét tam giác CHD và tam giác DCB có:
+)góc DCH=góc BDC
+)góc DHC=góc BCD
suy ra tam giác CHD đồng dạng tam giác DCB
c,Do BD vuông DE và HC vuông DE
=>BD//HC
=>CK/OB=EK/EO=HK/OD(bn suy ra từ ta-lét)
Mà OB=OD =>CK=HK=>K là trung điểm của CH.
Tỉ số bn dựa vào phần a,b
d,Gọi F là giao điểm của KF và DC(Bây h mình k vt hẳn chữ góc ra nx)
Vì HC//BD nên:
=>HCBD là hình thang
=>BH và DC là 2 đường chéo cắt nhau tại F(*)
Xét tam giác OFD và tam giác KFC,có:
+) ECK= ODF(do BD//CH)
+)DÒF=CKE(Do OD//KC và 2 góc ở vị trí sole trong)
Suy ra tam giác OFD đồng dạng tam giác KFC(g-g)
=>OFD=KFC mà 2 góc ở vị trí đối đỉnh nên
=> DC cắt OK tại F
=>BOK+OKC=180độ(2 góc trong cùng phía)
mà BOK=OKC(do KC//BO) mà 2 góc ở vị trí đồng vị nên
=>CKE+OKC=180 độ
=>O;K;E thẳng hàng mà DC cắt OK tại F nên
=>DC cắt OF tại F(**)
từ (*) và (**) suy ra:
OE;CD;BH thẳng hàng.
a: Xét ΔBCE vuông tại C và ΔDBE vuông tại B có
góc E chung
=>ΔBCE đồng dạng với ΔDBE
b: Xét ΔCBD vuông tại C và ΔHCB vuông tại H có
góc CBD=góc HCB
=>ΔCBD đồng dạng với ΔHCB
=>CB/HC=BD/CB
=>BC^2=HC*BD
c: CE=6^2/8=4,5cm
CH//DB
=>ΔEHC đồng dạng với ΔEBD
=>S EHC/S EBD=(EC/ED)^2=(4,5/12,5)^2=81/625
a: Xét ΔBCE vuông tại C và ΔDBE vuông tại B có
góc E chung
Do đó: ΔBCE\(\sim\)ΔDBE
b: Đề sai rồi bạn
a)xét tam giác BCE và tam giác DCE có:
\(\widehat{DBE}=\widehat{BCE}=90^o\)
\(\widehat{BEC}:chung\)
nên tam giác BCE ~ tam giác DBE(g-g)
a)Xét \(\Delta BCE\) và \(\Delta DBE\) có:
\(\widehat{BCE}\)=\(\widehat{BDE}\)(=90\(^0\))
\(\widehat{E}\)chung
=>\(\Delta BCE\)~\(\Delta DBE\)(g.g)
b)Theo câu a)\(\Delta BCE\)~\(\Delta DBE\)=>\(\widehat{CBE}\)=\(\widehat{BDE}\)
Xét \(\Delta BCH\) và \(\Delta BDC\) có:
\(\widehat{CBE}\)=\(\widehat{BDE}\)(cmt)
\(\widehat{CHB}\)=\(\widehat{DCB}\)(=90\(^0\))
=>\(\Delta BCH\)~\(\Delta BDC\)(g.g)
=>\(\dfrac{BC}{BD}=\dfrac{BH}{BC}\)
=>BC\(^2\)=BH.BD