K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét (OA/2) có

góc ACB là góc nội tiếp chắn cung AB

gsóc AOC là góc nội tiếp chắn cung AC

sđ cung AB=sđ cug AC

Do đó góc ACB=góc AOC

c: Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

Do đó: ΔABE đồng dạng với ΔADB

Suy ra: AB/AD=AE/AB

hay \(AB^2=AE\cdot AD\)

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB^2=AE*AD

9 tháng 7 2020

sdadssad

bạn sáng ko đc trả lời spam

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 9 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

27 tháng 5 2018

giúp câu c

12 tháng 8 2018

1) Chứng minh: Tứ giác MAOB nội tiếp một đường tròn

Vẽ được các yếu tố để chứng minh phần (1).

Ta có M B O ^ = 90 0 ,   M A O ^ = 90 0  (theo t/c của tiếp tuyến và bán kính)

Suy ra:  M A O ^ + M B O ^ = 180 0 .Vậy tứ giác MAOB nội tiếp đường tròn.

2) Chứng minh: MN2 = NF. NA và MN = NH

Ta có A E / / M O ⇒ A E M ^ = E M N ^   mà   A E M ^ = M A F ^ ⇒ E M N ^ = M A F ^

Δ N M F   v à   Δ N A M có:  M N A ^ chung;  E M N ^ = M A F ^

nên  Δ N M F đồng dạng với  Δ N A M

⇒ N M N F = N A N M ⇒ N M 2 = N F . N A        1

Mặt khác có: A B F ^ = A E F ^ ⇒ A B F ^ = E M N   ^ h a y   H B F ^ = F M H ^  

=> MFHB là tứ giác nội tiếp

⇒ F H M ^ = F B M ^ = F A B ^   h a y   F H N ^ = N A H ^

Xét Δ N H F   &   Δ N A H   c ó   A N H   ^ c h u n g ;   N H F ^ = N A H ^

=> Δ N M F đồng dạng  Δ N A H ⇒ ⇒ N H N F = N A N H ⇒ N H 2 = N F . N A        2  

Từ (1) và (2) ta có NH = HM

3) Chứng minh:  H B 2 H F 2 − EF M F = 1 .

Xét Δ M AF  và Δ M E A  có: A M E ^  chung, M A F ^ = M E A ^

suy ra  Δ M AF  đồng dạng với  Δ M E A

⇒ M E M A = M A M F = A E A F ⇒ M E M F = A E 2 A F 2      (3)

Vì MFHB là tứ giác nội tiếp ⇒ M F B ^ = M H B ^ = 90 0 ⇒ B F E ^ = 90 0 A F H ^ = A H N ^ = 90 0 ⇒ A F E ^   = B F H ^  

Δ A E F  và Δ H B F  có: E F A ^ = B F H ^   ;   F E A ^ = F B A ^

suy ra  Δ A E F   ~   Δ H B F  

⇒ A E A F = H B H F ⇒ A E 2 A F 2 = H B 2 H F 2                (4)

 

Từ (3) và (4) ta có M E M F = H B 2 H F 2 ⇔ M F + F E M F = H B 2 H F 2 ⇔ 1 + F E M F = H B 2 H F 2 ⇔ H B 2 H F 2 − F E M F = 1

 

25 tháng 3 2022

Ta có hình vẽ sau: 

O A B C E D F

a)Vì các tiếp tuyến AB, AC của (O) có B,C ∈ (O) nên \(\widehat{ABO}=\widehat{OCA}=90^o\)

  Xét tứ giác OBAC có: \(\widehat{ABO}+\widehat{OCA}=90^o+90^o=180^o\)

                                      \(\widehat{ABO}\) và \(\widehat{OCA}\) đối nhau

➤ Tứ giác OBAC nội tiếp đường tròn đường kính OA

b) Vì góc nội tiếp \(\widehat{BDE}\) chắn \(\stackrel\frown{BE}\)\(\widehat{ABE}\) được tạo bởi tiếp tuyến AB và chắn \(\stackrel\frown{BE}\) nên 

\(sđ\dfrac{\stackrel\frown{BE}}{2}=sđ\widehat{ABE}=sđ\widehat{BDE}\) trong khi E ∈ AD

▲ABE và ▲ADB có: \(\widehat{ABE}=\widehat{BDA}\)(cmtrên)

                                   \(\widehat{A}\) là góc chung

⇒▲ABE ∼ ▲ADB(g-g) ⇔ \(\dfrac{AB}{AD}=\dfrac{AE}{AB}\Leftrightarrow AB^2=AD\cdot AE\)(điều phải chứng minh)

Vì ▲OAB vuông tại B nên ta có: \(AB^2+OB^2=OA^2\)(Định lý Pytago)

                                                   \(\Leftrightarrow AB^2=OA^2-OB^2=\left(3R\right)^2-R^2\) vì B∈(O) 

                                                                                         \(=9R^2-R^2\\=8R^2 \)  

Trong khi, \(AB^2=AD\cdot AE\)(cmtrên). \(AD\cdot AE=8R^2\left(=AB^2\right)\)