K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2015

=\(3^n.9+3^n.3+2^n.8+2^n\)

\(=3^n\left(3+9\right)+2^n\left(8+1\right)\)

\(=3^n.12+2^n.9\)

\(=\left(3.2\right)^n+\left(12+9\right)=6^n+21\)

=>\(3^{n+2}+3^{n+1}+2^{n+3}+2^n\) chia hết cho 6

22 tháng 10 2015

Ta có: 3n+2+3n+1+2n+3+2n=3n.32+3n.31+2n-1+4+2n-1+1

=3n.9+3n.3+2n-1.24+2n-1.21

=3n.9+3n.3+2n-1.16+2n-1.2

=3n.(9+3)+2n-1.(16+2)

=3n.12+2n-1.18

=3n.2.6+2n-1.3.6

=(3n.2-2n-1.3).6 chia hết cho 6

Vậy 3n+2+3n+1+2n+3+2n chia hết cho 6

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

13 tháng 9 2017

1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1) 
Nếu n chia hết cho 5 ta dễ thấy đpcm 
Nếu n : 5 dư 1 => n = 5k + 1 
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5 
Nếu n : 5 dư 2 => n = 5k + 2 
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5) 
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5 
Nếu n : 5 dư 3 => n = 5k + 3 
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5 
Nếu n : 5 dư 4 => n = 5k + 4 
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5 
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6 

2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n 
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6 
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6 
=> n^3 - n chia hết cho 6 

3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n 
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6 
=> n^3 + 23n chia hết cho 6 

4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3] 
= 2n(n + 1)(n - 1) + 3n(n + 1) 
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
2n(n + 1)(n - 1) chia hết cho 2 
=> A chia hết cho 2 
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3 
3n(n + 1) chia hết cho 3 
=> A chia hết cho 3 
Mà (2 ; 3) = 1 (nguyên tố cùng nhau) 
=> A chia hết cho 6 

5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n 
Chứng minh bằng quy nạp 
Với n =1 => A = 0 chia hết cho 24 
Giả sử A chia hết 24 đúng với n = k 
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 
Ta phải chứng minh : 
A chia hết cho 24 đúng với n = k + 1 
Nghĩa là : 
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1) 
Khai triển ta được : 
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k) 
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24 
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1) 
= 12k(k - 1)^2 = 12k(k - 1)(k - 1) 
12 chia hết 12 
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24 
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp) 
=> A(k + 1) chia hết 24 
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm) 

6) n = 2k + 1 với k thuộc Z 
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3 
= 4k^2 + 12k + 8 
= 4(k^2 + 3k + 2) 
= 4(k + 2k + k + 2) 
= 4(k + 1)(k + 2) 
4 chia hết cho 4 
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ 

7) n = 2k + 1 
Đặt A = n^3 + 3n^2 - n - 3 
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3 
= 8k^3 + 24k^2 + 16k 
= 8k(k^2 + 3k + 2) 
= 8k(k^2 + k + 2k + 2) 
= 8k(k + 1)(k + 2) 
8 chia hết cho 8 
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6 
=> A chia hết cho 8.6 = 48 với n lẻ

4 tháng 10 2018
14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)

4 tháng 4 2015

Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)

Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3

Thật vậy

Ta có TH1: n = 3k + 1 (k thuộc Z)

=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3

         TH2: n = 3k + 2 (k thuộc Z)

=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3

=> n(n + 1)(2n + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n

2 tháng 1 2017

bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm

7 tháng 8 2017

Ta có:\(n^4+3n^3-n^2-3n=n^3.\left(n+3\right)-n.\left(n+3\right)=\left(n+3\right).\left(n^3-n\right)=\left(n+3\right).n.\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right).\left(n+3\right)⋮6\)b)Ta có:\(\left(2n-1\right)^3-2n+1=\left(2n-1\right).\left(\left(2n-1\right)^2-1\right)=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)=2n.\left(2n-1\right).\left(2n-2\right)⋮24\)

12 tháng 10 2016

Ta có:

2n3 + 3n2 + 7n

= 2n3 + 2n2 + n2 + n + 6n

= 2n2.(n + 1) + n.(n + 1) + 6n

= (n + 1).(2n2 + n) + 6n

= (n + 1).n.(2n + 1) + 6n

Vì 6n chia hết cho 6 nên ta phải chứng minh (n + 1).n.(2n + 1) chia hết cho 6

  • Vì (n + 1).n là tích 2 số tự nhiên liên tiếp nên (n + 1).n chia hết cho 2 => (n + 1).n.(2n + 1) chia hết cho 2 (1)
  • + Với n = 3k thì n chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3

+ Với n = 3k + 1 thì 2n + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3

+ Với n = 3k + 2 thì n + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3

Như vậy, (n + 1).n.(2n + 1) chia hết cho 3 (2)

Từ (1) và (2), mà (2;3)=1 => (n + 1).n.(2n + 1) chia hết cho 6

=> (n + 1).n.(2n + 1) + 6n chia hết cho 6

=> 2n3 + 3n2 + 7n chia hết cho 6 (đpcm)

18 tháng 4 2020

53n.52+22n.23=125n.25+4n.8

vì 125n đồng dư với 4n

=> dãy trên đồng dư với 4 . 25 + 4n.8=4n.(8+25)=4n.33 

vì 33 chia hết cho 11 =>đpcm