chứng minh biểu thức sau luôn đúng với mọi xy: 3x2+5y2-4xy-4x-(x+4y) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x^2+5y^2-4xy-4x+4y+7=x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
=(x-2y)2+2(x2-2x+1)+(y+2)2+1
=(x+2y)2+2(x-1)2+(y+2)2+1\(\ge\)1(với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1>0 với mọi x,y
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :
Lời giải:
Ta có:
$3x^2+5y^2-4xy-4x+4y+7=2x^2+y^2+(x^2+4y^2-4xy)-4x+4y+7$
$=(2x^2-4x+2)+(y^2+4y+4)+(x^2+4y^2-4xy)+1$
$=2(x^2-2x+1)+(y^2+4y+4)+(x^2+4y^2-4xy)+1=2(x-1)^2+(y+2)^2+(x-2y)^2+1$
$\geq 1>0$ với mọi $x,y$
Ta có đpcm.
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
\(3x^2-3x+5y^2-5y+3\\ =3\left(x^2-x+\dfrac{1}{4}\right)+5\left(y^2-y+\dfrac{1}{4}\right)+1\\ =3\left(x-\dfrac{1}{2}\right)^2+5\left(y-\dfrac{1}{2}\right)^2+1\ge1>0\)
Ta có : C = 4x2 + 4y2 - 8x + 4y + 427
=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422
=> C = (2x - 2)2 + (2y + 1)2 + 422
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall x\)
Nên C = (2x - 2)2 + (2y + 1)2 + 422 \(\ge422\forall x\)
Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)
Vậy C luôn luôn dương (đpcm)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
Ta có : 3x^2+5y^2-4xy-4x+4y+7
= x2-4xy+4y2+2x2-4x+2+y2+4y+4+1
= (x-2y)2+2(x2-2x+1)+(y+2)2+1
= (x+2y)2+2(x-1)2+(y+2)2+1 > 1 (với mọi x,y)
hay (x+2y)2+2(x-1)2+(y+2)2+1 >0 (với mọi x,y)
Vậy 3x^2+5y^2-4xy-4x+4y+7 > 0 đúng với mọi x, y :