K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(T=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(\odot\) Áp dụng bất đẳng thức AM - GM ta có:

\(yz\sqrt{x-1}=yz\times\left(1\times\sqrt{x-1}\right)\le yz\times\dfrac{1+x-1}{2}=\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}=\dfrac{xz}{\sqrt{2}}\times\left(\sqrt{2}\times\sqrt{y-2}\right)=\dfrac{xz}{\sqrt{2}}\times\dfrac{2+y-2}{2}=\dfrac{xyz}{2\sqrt{2}}\)

\(xy\sqrt{z-3}=\dfrac{xy}{\sqrt{3}}\times\left(\sqrt{3}\times\sqrt{z-3}\right)=\dfrac{xy}{\sqrt{3}}\times\dfrac{3+z-3}{2}=\dfrac{xyz}{2\sqrt{3}}\)

\(\odot\) Suy ra \(T\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

\(\odot\) Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\\sqrt{2}=\sqrt{y-2}\\\sqrt{3}=\sqrt{z-3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

5 tháng 5 2018

Áp dụng bất đẳng thức Bunyakovsky:

\(P^2=\left(\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)\)

\(=3\left(4+xy+yz+xz\right)=12+3\left(xy+yz+xz\right)\)

Mặt khác,theo AM-GM:

\(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=4\)

\(\Rightarrow12+3\left(xy+yz+xz\right)\le12+4=16\)

\(\Rightarrow P^2\le16\Leftrightarrow P\le4\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)

8 tháng 10 2017

ta có

can x+1 >=0 voi moi x

can 6-x >=0 voi moi x

=> căn x+1 + căn 6-x >= 0

8 tháng 10 2017

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\ge\)7                                        => Q\(\ge\)\(\sqrt{7}\)

dấu bằng khi x=-1 hoặc x=6

Q2=7+2\(\sqrt{\left(x+1\right)\left(6-x\right)}\)\(\le\)7+x+1+6-x = 14             => Q\(\le\) \(\sqrt{14}\)

dấu bằng khi x+1 = 6-x    <=> 2x =5     <=> x=2.5

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi

9 tháng 12 2019

a) DK : x > 0; x khác 1

 \(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

c )  \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)

<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)

TH1: Q = 0 => x = 0 loại

TH2: Q khác 0

(1) là phương trình bậc 2 với tham số Q ẩn x.

(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)

<=> \(-3Q^2+4Q+4\ge0\)

<=> \(-\frac{2}{3}\le Q\le2\)

Vì Q nguyên và khác 0 nên Q =  1 hoặc Q = 2

Với Q = 1 => \(x-3\sqrt{x}+1=0\)

<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x 

Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.

Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.