Cho a > b \(\ge0\)
CMR: a + \(\dfrac{1}{\left(b+1\right)^2\left(a-b\right)}\ge3\)
(Sử dụng Cauchy)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết:
\(a^2+b^2+c^2+a^2+b^2+c^2+2\left(ab+bc+ca\right)\le4\)
\(\Rightarrow a^2+b^2+c^2+ab+bc+ca\le2\)
Ta có:
\(\dfrac{ab+1}{\left(a+b\right)^2}=\dfrac{1}{2}.\dfrac{2ab+2}{\left(a+b\right)^2}\ge\dfrac{1}{2}.\dfrac{2ab+a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)^2}=\dfrac{1}{2}\dfrac{\left(a+b\right)^2+\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{\left(a+c\right)\left(b+c\right)}{\left(a+b\right)^2}\)
Tương tự và cộng lại, đồng thời đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\):
\(\Rightarrow VT\ge\dfrac{3}{2}+\dfrac{1}{2}\left(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\right)\ge\dfrac{3}{2}+\dfrac{1}{2}.3\sqrt[3]{\dfrac{yz.xz.xy}{x^2y^2z^2}}=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
\(b\left(a-b\right)\le\dfrac{\left(b+a-b\right)^2}{4}=\dfrac{a^2}{4}\)
\(\Rightarrow\dfrac{1}{b\left(a-b\right)}\ge\dfrac{4}{a^2}\)
\(\Rightarrow a+\dfrac{1}{b\left(a-b\right)}\ge a+\dfrac{4}{a^2}=\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{4}{a^2}\ge3\sqrt[3]{\dfrac{a}{2}\dfrac{a}{2}\dfrac{4}{a^2}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{4}{a^2}\\b=a-b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)