K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Ta có:

\(x^4\)\(3x^2\)\(\ge0\) (do có số mũ chẵn )

Nếu Q(x)=\(x^4+3x^2+1=0\)

\(\Rightarrow x^4+3x^2=-1\)

\(x^4;3x^2\ge0\)

\(\Rightarrow q\left(x\right)=x^4+3x^2+1\) không có nghiệm

\(\Rightarrow dpcm\)

3 tháng 5 2018

Đa thức Q(x)=x^4+3x^2+1

Ta có:

x^4 >,=0 với mọi x

3x^2>,=0 với mọi x

1>0

=>Đa thức Q(x)=x^4+3x^2+1>0

nên đa thức Q(x) không có nghiệm

27 tháng 4 2022

thu gọn rồi chứng minh nó > 0

7 tháng 5 2022

        Đặt Q(x) = 0 

=> x2 + 5x - 3 = 0 

=> x2 + 5x       = 3 

=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)

7 tháng 5 2022

     Đặt Q(x) = 0 

=> x2 + 5x - 3 = 0 

=> x2 + 5x       = 3 

 

=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)

1 tháng 4 2017

Ta có \(x^4\ge0\) ( lũy thừa bậc chẵn)

\(3x^2\ge0\) ( vì x2 là lũy thừa bậc chẵn nên lớn hơn 0 )

=> A(x) > 0

Vậy đa thức A(x) ko có nghiệm

Ta có : \(x^4>=0\);\(3x^2>=0\)\(1>0\)

=> \(x^4+3x^2+1>0\)

=> PTVN

21 tháng 5 2021

`M(x)=P(x)+Q(x)`

`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`

`=2x^4+6`

Đặt `M(x)=0`

`<=>2x^4+6=0`

`<=>x^4=-3`(vô lý vì `x^4>=0`)

a) Ta có M(x)=P(x)+Q(x)

                     =(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))

                     =\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)

                     =(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)

                     =\(2x^4\)+6

Vậy M(x)=\(2x^4+6\)

b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x

  nên \(2x^4+6\)  \(\ge\)0 với \(\forall\)x

\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x

Vậy M(x) vô nghiệm

5 tháng 4 2020

 T=M−N=12x2−16xy+18y2−3x2+16xy−14y2

=9x2+4y2

Mà 9x2> 0 ; 4y2> 0 => T=9x2+4y2> 0

Vậy T không nhận giá trị âm x và y

5 tháng 4 2020

 T=M−N=12x2−16xy+18y2−3x2+16xy−14y2T=M−N=12x2−16xy+18y2−3x2+16xy−14y2

=9x2+4y2=9x2+4y2

Mà {9x2≥04y2≥0⇒T=9x2+4y2≥0∀x,y{9x2≥04y2≥0⇒T=9x2+4y2≥0∀x,y

Vậy T không nhận giá trị âm ∀x,y∀x,y

8 tháng 5 2017

theo bài ra ta có: \(Q_{\left(x\right)}=x^4+3x^2+1\)

ta thấy: \(x^4\ge0\\3x^2\ge0\\ \)

=> \(x^4+3x^2\ge0\)

=> \(x^4+3x^2+1\ge1\)

=> \(Q_{\left(x\right)}\) vô nghiệm (đpcm)

8 tháng 5 2017

sorry nha bản trên có tí lỗi là : Q(x)= x4+3x2+1

a: A(x)=3x^5+x^4+x^2+2x

B(x)=-3x^5-x^4+x^2+x-2

b: M(x)=3x^5+x^4+x^2+2x-3x^5-x^4+x^2+x-2

=2x^2+3x-2

c: M(-2)=8-6-2=0

d: M(3)=2*3^2+3*3-2=18+9-2=25

=>x=3 ko là nghiệm

a: A(x)=x^4-x^3-3x^2+2

B(x)=x^4+3x^2+5

b: A(x)+B(x)=2x^4-x^3+7

c: B(x)=x^2(x^2+3)+5>0 

=>B(x) ko có nghiệm