K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

CD=AC-CD=5cm

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

Do đó: ΔBAD=ΔBED
Suy ra: BA=BE

hay ΔBAE cân tại B

c: Ta có: DE=DA
mà DA<DF

nên DE<DF

17 tháng 2 2016

mih biet

k nha

roi mih giai cho

a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: ΔDEC vuông tại E 

=>DE<DC

c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

d: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

e: gọi giao của CF và AB là H

Xét ΔBHC có

BF,CA là đường cao

BF cắt CA tại D

=>D là trực tâm

=>HD vuông góc BC tại E

=>H,D,E thẳng hàng

=>BA,DE,CF là trực tâm

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔABD=ΔHBD

b: Xét ΔDAE vuông tại A và ΔDHC vuông tại H có

DA=DH

AE=HC

=>ΔDAE=ΔDHC

=>DE=DC

1 tháng 4 2019

a) cm tg ABM = tg ACM moi dung phai ko ban

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: ta có: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

Ta có: DA=DH

DH<DC

Do đó: DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

=>\(\widehat{ADK}=\widehat{HDC}\)

mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)

nên \(\widehat{ADK}+\widehat{ADH}=180^0\)

=>K,D,H thẳng hàng

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH và AK=HC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: ΔDAK=ΔDHC

=>DK=DC

=>D nằm trên đường trung trực của CK(4)

Từ (3),(4) suy ra BD là đường trung trực của CK

=>BD\(\perp\)CK

17 tháng 4 2018

a) Ta có: AB < AC

=> ACB < ABC 

ABH = 90 - 60 = 30o

b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o

ABI = 90 - 30 = 60

Xét 2 tam giác vuông AIB và BHA có: AB (chung)

Ta có: BAH = ABD = 60 (cmt)

=> AIB = BHA (ch - gn)

c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)

=> AIB = BHA = 60o

=> BEA = 180 - 60 - 60 = 60o

Có: ABE = BEA = EAB = 60

=> Tam giác ABE là tam giác đều.

d) Gọi Bx là tia đối của tia BA

Xét tam giác ADB  và tam giác ADC có: AB = AE 

EAD = DAB = 30o

Cạnh AD chung.

=> Tam giác ADB = tam giác ADC (c.g.c)

=> DB = DB (1) và góc ABD = góc AED

Do đó:

CBx = CED (cùng kề bù với 2 góc = nhau)

CBx > C

=> DC > DE (2)

Từ (1); (2) => DC > DB