cho tam giác ABC vuông tại A
AB=3 cm;AC=4cm. AD là tia phân giác của góc A
a, tính\(\dfrac{DB}{DC}\)
b, kẻ đường cao AH.cmr tam giác AHB~ tam giác CHA
c, tính\(\dfrac{S\Delta AHB}{S\Delta CHA}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3^2+4^2=9+16=25
Căn bậc hai của 25 bằng 5 suy ra tam giac ABC vuong tai A
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Xét \(\Delta ABC\)vuông tại A
=>AB2 +AC2=BC2
32+AC2=52=> AC2=52-32= 25-9=16
=> AC=\(\sqrt{16}\)=4
Diện tích \(\Delta ABC\) là: (ACxAB)/2=4x3/2=12/2=6(cm2)
Vậy: diện tích am giác ABC là 6 cm2
a: BC=5cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE và BA=BE
=>BD là đường trung trực của AE
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
a: DB/DC=AB/AC=3/4
b: XétΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=goc HCA
Do đó: ΔHAB đồng dạg với ΔHCA
c: \(\dfrac{S_{AHB}}{S_{CHA}}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)