Cho a, b, c là các số thực dương thỏa mãn a+b+c = 1. Chứng minh rằng:
\(\frac{a}{1+b-a}\)+\(\frac{b}{1+c-b}\)+\(\frac{c}{1+a-c}\)\(\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
Tương tự,cộng theo vế và rút gọn =>đpcm
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt CÔ si
\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
.............
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
\(a^3+1+1\ge3a\)
\(b^3+1+1\ge3b\)
\(c^3+1+1\ge3c\)
\(2\left(a^3+b^3+c^3\right)\ge6abc\)
Cộng vế:
\(3\left(a^3+b^3+c^3\right)+6\ge3\left(a+b+c+2abc\right)=15\)
\(\Rightarrow a^3+b^3+c^3\ge3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(P=\left(b+c+d\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=1+\frac{b}{c}+\frac{b}{d}+\frac{c}{b}+1+\frac{c}{d}+\frac{d}{b}+\frac{d}{c}+1\)
\(=3+\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}\)
Mặt khác do \(b\le c\le d\Rightarrow\left(d-c\right)\left(c-b\right)\ge0\)
\(\Leftrightarrow cd-bd-c^2+bc\ge0\Leftrightarrow bc+cd\ge c^2+bd\)
\(\Leftrightarrow\frac{bc+cd}{cd}\ge\frac{c^2+bd}{cd}\Leftrightarrow\frac{b}{d}+1\ge\frac{c}{d}+\frac{b}{c}\)
\(\frac{bc+cd}{bc}\ge\frac{c^2+bd}{bc}\Leftrightarrow\frac{d}{b}+1\ge\frac{c}{b}+\frac{d}{c}\)
\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}+2\ge\frac{b}{c}+\frac{c}{d}+\frac{c}{b}+\frac{d}{c}\)
\(\Leftrightarrow2\left(\frac{b}{d}+\frac{d}{b}\right)+2\ge\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}=P\)
Mà \(a\le b\le d\le2a\Rightarrow\left\{{}\begin{matrix}\frac{1}{2}\le\frac{b}{d}\le1\\1\le\frac{d}{b}\le2\end{matrix}\right.\)
\(\Rightarrow\left(\frac{b}{d}-1\right)\left(\frac{d}{b}-2\right)\ge0\Leftrightarrow1-2\frac{b}{d}-\frac{d}{b}+2\ge0\)
\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}\le3-\frac{b}{d}\le3-\frac{1}{2}=\frac{5}{2}\)
\(\Rightarrow P\le2.\frac{5}{2}+2=7\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=c=a\\d=2a\end{matrix}\right.\)
Vì \(\left|a\right|\le1;\left|b-1\right|\le2\)
\(=>\left|a\right|\cdot\left|b-1\right|=\left|ab-a\right|\le2\)
Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) ta có:
\(\left|a-c+ab-a\right|\le\left|a-c\right|+\left|ab-a\right|=2+3=5\)
\(=>\left|ab-c\right|\le5\)
Ta có 1+c2=ab+bc+ca+c2=(a+c)(b+c)
Tương tự 1+a2=(a+b)(a+c)
1+b2=(a+b)(b+c)
Suy ra \(\frac{a-b}{1+c^2}=\frac{a-b}{\left(a+c\right)\left(b+c\right)}=\frac{1}{c+b}-\frac{1}{c+a}\)
\(\frac{b-c}{1+a^2}=\frac{b-c}{\left(a+b\right)\left(a+c\right)}=\frac{1}{a+c}-\frac{1}{a+b}\)
\(\frac{c-a}{1+b^2}=\frac{c-a}{\left(a+b\right)\left(b+c\right)}=\frac{1}{a+b}-\frac{1}{b+c}\)
\(\Rightarrow\frac{a-b}{1+c^2}+\frac{b-c}{1+a^2}+\frac{c-a}{1+b^2}=\frac{1}{c+b}-\frac{1}{c+a}+\frac{1}{a+c}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}=0\)