Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c là ba cạnh của một tam giác có chu vi bằng 2.Chứng ming rằng:
a2+b2+c2+2abc < 2
Theo bất đẳng thức tam giác: \(\left\{{}\begin{matrix}a+b>c\Leftrightarrow a+b+c>2c\Leftrightarrow2c< 2\Leftrightarrow c< 1\\b+c>a\Leftrightarrow a+b+c>2a\Leftrightarrow2a< 2\Leftrightarrow a< 1\\a+c>b\Leftrightarrow a+b+c>2b\Leftrightarrow2b< 2\Leftrightarrow b< 1\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)\(\Rightarrow\left(1-b-a+ab\right)\left(1-c\right)>0\) \(\Rightarrow1-c-b+bc-a+ac+ab-abc>0\) \(\Rightarrow1+bc+ac+ab>2+abc\Leftrightarrow bc+ac+ab>1+abc\) \(\Rightarrow2ab+2bc+2ac>2+2abc\Leftrightarrow\left(a+b+c\right)^2>2+2abc+a^2+b^2+c^2\) \(\Rightarrow a^2+b^2+c^2+2abc+2< 4\Leftrightarrow a^2+b^2+c^2+2abc< 2\)(đpcm)
Theo bất đẳng thức tam giác: \(\left\{{}\begin{matrix}a+b>c\Leftrightarrow a+b+c>2c\Leftrightarrow2c< 2\Leftrightarrow c< 1\\b+c>a\Leftrightarrow a+b+c>2a\Leftrightarrow2a< 2\Leftrightarrow a< 1\\a+c>b\Leftrightarrow a+b+c>2b\Leftrightarrow2b< 2\Leftrightarrow b< 1\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)\(\Rightarrow\left(1-b-a+ab\right)\left(1-c\right)>0\) \(\Rightarrow1-c-b+bc-a+ac+ab-abc>0\) \(\Rightarrow1+bc+ac+ab>2+abc\Leftrightarrow bc+ac+ab>1+abc\) \(\Rightarrow2ab+2bc+2ac>2+2abc\Leftrightarrow\left(a+b+c\right)^2>2+2abc+a^2+b^2+c^2\) \(\Rightarrow a^2+b^2+c^2+2abc+2< 4\Leftrightarrow a^2+b^2+c^2+2abc< 2\)(đpcm)