K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

xin lỗi mk mới lớp 7 nhưng bn hãy vận dụng ng~ j bn đã học bn sẽ làm được..

-----chúc bn học tốt-------

3 tháng 4 2017

VRCT_Hoàng Nhi_BGS như trẻ con mà tỏ vẻ người lớn

11 tháng 9 2017

*)Maximize : Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2\le\left(1+1\right)\left(x+1+y+1\right)=2\left(x+y+2\right)\)

Và \(VP^2=\left(\sqrt{2}\left(x+y\right)\right)^2=2\left(x+y\right)^2\)

\(\Rightarrow2\left(x+y\right)^2\le2\left(x+y+2\right)\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-2\le0\)

\(\Rightarrow\left(x+y-2\right)\left(x+y+1\right)\le0\)

\(\Rightarrow-1\le P=x+y\le2\) 

Khi \(x=y=1\) thì \(P_{Max}=2\)

*)Minimize: Áp dụng BĐT Karamata ta có:

\(VT=\sqrt{2}\left(x+y\right)=\sqrt{x+1}+\sqrt{y+1}=VP\)

\(\ge\sqrt{0}+\sqrt{x+1+y+1}\)

\(\Rightarrow\sqrt{2}\left(x+y\right)\ge\sqrt{x+1+y+1}\)

\(\Rightarrow2\left(x+y\right)^2\ge\left(x+y\right)+2\)

\(\Rightarrow2\left(x+y\right)^2-\left(x+y\right)-2\ge0\)

\(\Rightarrow P=x+y\ge\frac{1+\sqrt{17}}{4}\)

Khi \(x=\frac{5+\sqrt{17}}{4};y=-1\) thì \(P_{Min}=\frac{1+\sqrt{17}}{4}\)

#Vỗ tay coi :))

11 tháng 9 2017

Thắng -_- ừ, hay lắm :))

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

NV
18 tháng 5 2021

Đề bài sai, phản ví dụ:

Với \(x=1;y=0\) thì x;y thỏa mãn \(\left(x+1\right)\left(y+1\right)=2\)

Nhưng \(P=1-\sqrt{6}\) không phải số nguyên

 

18 tháng 5 2021

Cảm ơn đã góp ý ạ

 

30 tháng 5 2016

Đặt \(\sqrt{\text{x}}-\sqrt{y}=a\)\(\sqrt{y}-\sqrt{z}=b\)\(\sqrt{z}-\sqrt{x}=c\)

\(\Rightarrow a+b+c=0\). Ta sẽ chứng minh : \(a^3+b^3+c^3=3abc\)

Ta có : \(a+b+c=0\Rightarrow a=-\left(b+c\right)\Rightarrow a^3=-\left(b+c\right)^3\)

\(\Rightarrow a^3=-\left[b^3+c^3+3bc\left(b+c\right)\right]\Rightarrow a^3+b^3+c^3=-3bc\left(-a\right)=3abc\)

Mặt khác, ta lại có : \(a^3+b^3+c^3=0\left(gt\right)\Rightarrow3abc=0\Rightarrow abc=0\)

\(\Rightarrow a=0\)hoặc \(b=0\)hoặc \(c=0\)

Tu do de dang giai tiep bai toan!

14 tháng 2 2020

Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT Cô-si, ta có :

\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)

\(\Rightarrow x+y\ge2\)

Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\)\(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)

\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)

\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)

Vậy GTNN của P là 2 khi x = y = 1