1) Chứng minh : nếu 2 số a,b là 2 số nguyên khác 0 và a là bội của b, b là bội của a thì a= b hoặc a= -b.
2) Tìm số nguyên n biết n+5 chia hết cho n+1 và n+1 chia hết cho n+5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)
\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)
hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc N => n = { 1 ; -1 }
b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
n - 2 | 1 | -1 | 11 | -11 |
n | 3 | 1 | 13 | -9 |
1.
$a\vdots b, b\vdots a$ và $a,b\neq 0$ nên $|a|\geq |b|, |b|\geq |a|$
$\Rightarrow |a|=|b|$
$\Rightarrow a=\pm b$
Ta có đpcm.
2/
Áp dụng kết quả của bài 1, ta suy ra $n+5=n+1$ hoặc $n+5=-(n+1)$
Nếu $n+5=n+1$
$\Leftrightarrow 5=1$ (vô lý)
Nếu $n+5=-(n+1)$
$\Rightarrow 2n+6=0$
$\Rightarrow 2n=-6$
$\Rightarrow n=-3$