1,Cho tam giác ABC cân tại A và hai đường cao trung tuyến BM và CN cắt nhau tại D. Chứng minh
a, Cm tg BNC=tg CMB
b, Cm tg BDC cân tại D
c, BC< 4DM
2, Cho tg vuông ABC có góc A=90 độ. Đường trung trực của AB cắt AB tại E và BC tại F
a, chứng minh FA=FB
b, Từ F kẻ FH vuông góc với AC tại H. chứng minh FH vuông góc với EF
c, chứng minh FH=AE
d, chứng minh EH song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI I LA GIAO DIEM CAC DUONG FAN GIAC CUA TAN GIAC BGC .Ba diem A G I co thang hang khong vi sao
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
1) d) Ta có: \(\Delta\)KHC cân tại H
=> HK = CK
=> AB = AC = 2Ck = 2HK
=> AB = 2 HK
Ta có:
Qua H kẻ đường thẳng // với HA cắt AB tại T
Xét \(\Delta\)KHA và \(\Delta\)ATK có:
AK chung
^HKA = ^TAK ( so le trong )
^HAK = ^TKA ( so le trong )
=> \(\Delta\)KHA = \(\Delta\)ATK
=> AT = HK và KT = HA
=> AB = 2HK = 2AT
Khi đó: AH + BK = KT + BK > BT = AB + AT
=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB
Vậy 2 ( AH + BK) > 3AB
2)
a)
- Xét \(\Delta\)ADC và \(\Delta\)ABE có:
AD = AB ( \(\Delta\)ADB cân tại A )
AC = AE ( \(\Delta\)ACE cân tại E)
^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC ; ^BAE = ^BAC + ^CAE = ^BAC + 90o )
=> \(\Delta\)ADC = \(\Delta\)ABE (1)
=> CD = EB
- Gọi P; Q lần lượt là giao điểm của DC và BA và BE
(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)
Xét \(\Delta\)APD và \(\Delta\)PQB
có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB = 180 độ ( tổng 3 góc trong 1 tam giác )
mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh)
=> ^PQB = ^PAD = ^BAD = 90 độ ( \(\Delta\)ABD vuông )
=> DC vuông BE
b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE
Gọi giao điểm của DE và MA là I
Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA (3)
=> DM = AE = AC
Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ
mà ^DAE + ^BAC = 180 độ
=> ^MDA = ^BAC
Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM
=> \(\Delta\)ABC = \(\Delta\)DAM
=> ^DAM = ^ABC
=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ
=> M; I; A; H thẳng hàng
=> AH cắt DE tại I
(3) => ID = IE => I là trung điểm của DE
Do vậy AH đi qua trung điểm của DE
Câu 1:
a: Xét ΔBNC và ΔCMB có
NB=MC
góc NBC=góc MCB
BC chung
Do đó: ΔBNC=ΔCMB
b: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D