Tìm x biết : \(\left|5x-3\right|-x\ge7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Ta có :
\(\left|3-5x\right|\ge7\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3-5x\ge7\\5x-3\ge7\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-5x\ge4\\5x\ge10\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le-\frac{4}{5}\\x\ge2\end{array}\right.\)
Vậy ........

Theo bài ra ta có:
|5x-3| lớn hơn hoặc bằng 7
=> 5x-3 lớn hơn hoặc bằng 7 hoặc 5x-3 lớn hơn hoặc bằng -7
=> x lớn hơn hoặc bằng 2 hoặc x lớn hơn hoặc bằng 4/15
PS mình ko ghi đc dấu lớn hơn hoặc bằng
Ta có: \(\left|5x-3\right|\ge7\)
\(\Rightarrow\orbr{\begin{cases}5x-3\ge7\\5x-3\ge-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5x\ge10\\5x\ge-4\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ge-\frac{4}{5}\end{cases}}}\)
_Học tốt_

|5x-3| \(\geq\) 7
<=> 5x - 3 \(\leq\) -7 hoặc 5x - 3 \(\geq\) 7
<=> 5x \(\leq\) -4 hoặc 5x \(\geq\) 10
<=> x \(\leq\)\(\frac{-4}{5}\) hoặc x \(\geq 2\)

Theo bài ra , ta có :
\(\left|5x-3\right|\ge7\)
\(\Rightarrow\orbr{\begin{cases}5x-3\ge7\\5x-3\ge-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge2\\x\ge\frac{4}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x\ge2\\x\ge\frac{4}{5}\end{cases}}\)

\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)
\(25x^2-10x+1-25x^2+16=7\)
\(17-10x=7\)
\(10x=10\)
\(x=1\)

a: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)

a) 2x2 - 6x - 2x2 - 3x = 18
-9x = 18
x = -2
b) 5x3 - 2x + 5x - 5x3 = 34
3x = 81
x = 27
a,\(2x\left(x-3\right)-x\left(2x+3\right)=18\)
\(\Leftrightarrow2x^2-6x-2x^2-3x=18\)
\(\Leftrightarrow-9x=18\)
\(\Leftrightarrow x=-2\)
Tập nghiệm của pt đã cho là {-2}
\(\Leftrightarrow x\left(5x^2-2\right)+5x\left(1-x^2\right)=3^4\)
\(\Leftrightarrow5x^3-2x+5x-5x^3=81\)
<=>3x=81
<=>x=27
Tập nghiệm của pt đã cho là {27}
Ta có:\(\left|5x-3\right|=\left[{}\begin{matrix}5x-3\left(x\ge0\right)\\-\left(5x-3\right)=3-5x\left(x< 0\right)\end{matrix}\right.\)
Do đó, ta có 2 TH:
TH1:
\(5x-3-x\ge7\left(x\ge0\right)\\ \Leftrightarrow4x\ge7+3\\ \Leftrightarrow4x\ge10\\ \Leftrightarrow x\ge2,5\left(t/m\right)\)
TH2:
\(3-5x-x\ge7\left(x< 0\right)\\ \Leftrightarrow-6x\ge7-3\\ \Leftrightarrow-6x\ge4\\ \Leftrightarrow x\le-\dfrac{2}{3}\left(t/m\right)\)
Vậy \(x\ge2,5\) hoặc \(x\le-\dfrac{2}{3}\)