K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)

\(\Leftrightarrow1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\ge9\)

Lại có:\(\dfrac{1}{b}+\dfrac{1}{a}\ge\dfrac{4}{a+b}=4\)

\(ab\le\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)\(\Rightarrow\dfrac{1}{ab}\ge\dfrac{1}{\dfrac{1}{4}}=4\)

\(\Rightarrow1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\ge1+4+4=9\left(\text{đ}pcm\right)\)

30 tháng 9 2015

Ta có :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}=3+2+2+2=9\)

Dấu bằng của BĐT xảy ra khi a = b= c = 1/3

30 tháng 9 2015

hay lắm Trần Đức Thắng

10 tháng 9 2016

Đề là 

Cho \(a;b;c\ge0\) thỏa mãn a+b+c = 1

Cmr : \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\ge\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}\) ak bạn 

18 tháng 9 2016

Ta có:a+b+c=1

\(đpcm\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{2}{a+2b+c}+\frac{2}{2a+b+c}+\frac{2}{a+b+2c}\)(*)

Áp dụng BĐT Bunhiacopxki:

\(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)(1)

Tương tự:\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{a+b+2c}\)(2)

\(\frac{1}{a+b}+\frac{1}{c+a}\ge\frac{4}{2a+b+c}\)(3)

Cộng theo từng vế của (1);(2);(3) ta đc:(*)(đpcm)

Dấu ''='' xảy ra\(\Leftrightarrow a=b=c=\frac{1}{3}\)

 

29 tháng 10 2017

Giả thiết ngứa mắt vc , let's biến đổi chút 

\(GT\Leftrightarrow\frac{1-a}{a}.\frac{1-b}{b}.\frac{1-c}{c}=1\). Đặt \(\left(\frac{1-a}{a};\frac{1-b}{b};\frac{1-c}{c}\right)\rightarrow\left(x;y;z\right)\)

thì \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

nên bài toán đã cho trở thành \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\left(xyz=1\right)\)

để ý rằng \(VT\ge\frac{1}{2\left(x^2+1\right)}+\frac{1}{2\left(y^2+1\right)}+\frac{1}{2\left(z^2+1\right)}\)

nên chỉ cần chứng minh \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{2}\left(xyz=1\right)\)

29 tháng 10 2017

bất đẳng thức dưới cùng chứng minh như thế nào bn

21 tháng 2 2020

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

\(\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)

\(\ge\frac{\left(a+b+\frac{4}{a+b}\right)^2}{2}\)

\(=\frac{25}{2}\) 

tại a=b=1/2

21 tháng 2 2020

thêm ít cách

Cách 1:

Áp dụng BĐT bunhiacopxki ta được:

\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(a+\frac{1}{b}\right)+\left(b+\frac{1}{a}\right)\right]^2\)

\(\Leftrightarrow\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge\left(1+\frac{1}{a}+\frac{1}{b}\right)^2\)(1)

Ta có:\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)( tự CM nha )

ÁP dụng BĐT AM-GM ta có:

\(\sqrt{ab}\le\frac{a+b}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge4\)(2)

Thay (2) vào (1) ta được: 

\(\left[\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\right]2\ge25\)

\(\Rightarrow\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{25}{2}\left(đpcm\right)\)

Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Cách 2: 

Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

Ta có: \(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\)

\(=a^2+\frac{2a}{b}+\frac{1}{16b^2}+\frac{15}{16b^2}+b^2+\frac{2b}{a}+\frac{1}{16a^2}+\frac{15}{16a^2}\)

\(=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\left(\frac{2a}{b}+\frac{2b}{a}\right)+\left(\frac{15}{16b^2}+\frac{15}{16a^2}\right)\)

ÁP dụng BĐT AM-GM ta có:

\(a^2+\frac{1}{16a^2}\ge2\sqrt{a^2.\frac{1}{16a^2}}\ge\frac{1}{2}\)(3)

\(b^2+\frac{1}{16b^2}\ge2\sqrt{b^2.\frac{1}{16b^2}}\ge\frac{1}{2}\)(4)

\(\frac{2a}{b}+\frac{2b}{a}\ge2\sqrt{\frac{2a}{b}.\frac{2b}{a}}\ge4\)(5)

\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge2\sqrt{\frac{15.15}{16.16a^2b^2}}=\frac{15}{8ab}\)(1) 

ÁP dụng BĐT AM-GM ta có:

\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)(2)

Thay (2) vào (1) ta được:

\(\frac{15}{16a^2}+\frac{15}{16b^2}\ge\frac{15}{2}\)(6)

Cộng (3)+(4)+(5)+(6) ta được: 

\(P\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{2}+4=\frac{25}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)

Cách 3:Làm tắt thui ạ

Đặt \(P=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\)

\(\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2=a^2+\frac{2a}{b}+\frac{1}{b^2}+b^2+\frac{2b}{a}+\frac{1}{a^2}\ge2ab+\frac{2}{ab}+4\)

\(P\ge2\left(ab+\frac{1}{ab}\right)+4\)

\(P\ge2\left(ab+\frac{1}{16ab}+\frac{15}{16ab}\right)+4\)

giống cách 2 rồi làm nốt