Tính tổng nghịch đảo của các số sau: 3, 15, 35, 63, 99, 143
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không lẽ nào bằng nhau được đâu vì
\(\left(\frac{1}{30}+\frac{1}{42}\right)+\left(\frac{1}{56}+\frac{1}{72}\right)+\left(\frac{1}{90}+\frac{1}{110}\right)+\left(\frac{1}{132}+\frac{1}{156}\right)+\left(\frac{1}{182}+\frac{1}{210}\right)=\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\)
Hình như bn làm sai ấy. Chứ bài này sách của mk giải đc mà.
\(\frac{5}{3}+\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+\frac{5}{99}+\frac{5}{143}\)
\(=\frac{5}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{11\cdot13}\right)\)
\(=\frac{5}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{5}{2}\cdot\left(1-\frac{1}{13}\right)\)
\(=\frac{5}{2}\cdot\frac{12}{13}\)
\(=\frac{30}{13}\)
\(\frac{5}{3}+\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+\frac{5}{99}+\frac{5}{143}\)
\(=5\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)
\(=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{13}\right)\)
\(=\frac{5}{2}.\frac{12}{13}\)
\(=\frac{30}{13}\)
\(A=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}+\frac{142}{143}\)
\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)+\left(1-\frac{1}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)
\(=6-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\right)\)
\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-1+\frac{1}{13}\)
\(=5+\frac{1}{13}\)
\(=\frac{66}{13}\)
Mk sửa lại 1 tí nha dòng thứ 5 :
\(A=6-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\frac{1}{2}\left(1-\frac{1}{13}\right)\)
\(=6-\frac{1}{2}.\frac{12}{13}\)
\(=6-\frac{6}{13}=\frac{72}{13}\)
Mong bn bỏ qua nha
Ta so sánh các số hạng
=> Dãy số từ lớn -> bé
=> \(\frac{1}{3}< \frac{1}{2}\)
Nên tất cả các số phía sau đều bé hơn \(\frac{1}{2}\)
Đặt \(A=\)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{143}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{11.13}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(2A=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
\(A=\frac{5}{39}\)
Câu còn lại cx dựa như vậy nhé bn !
Chúc bn hc tốt <3
\(\frac{2^2}{15}+\frac{2^2}{35}+\frac{2^2}{63}+\frac{2^2}{99}+\frac{2^2}{143}=2\cdot\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\right)=2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)=2\cdot\left(\frac{1}{3}-\frac{1}{13}\right)=2\cdot\frac{10}{39}=\frac{20}{39}\)
\(=2\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=2\left(1-\frac{1}{13}\right)=2.\frac{12}{13}=\frac{24}{13}\)
1/3+1/15+1/35+1/63+1/99+1/143
=1/1x3+1/3x5+1/5x7+1/7x9+1/9x11+1/11x13
=1/2x(2/1x3+2/3x5+2/5x7+2/7x9+2/9x11+2/11x13)
=1/2x(1/1-1/3+1/3-1/5+...+1/11-1/13)
=1/2x[1/1-(1/3-1/3)-(1/5-1/5)-...-(1/11-1/11)-1/13]
=1/2x(1/1-0-0-...-0-1/13)
=1/2x(1/1-1/13)
=1/2x12/13
=6/13