K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAOB và ΔCOD có

góc AOB=góc COD

góc OAB=góc OCD
Do đo: ΔAOB đồng dạng với ΔCOD

Suy ra: AB/CD=OA/OC=1/2

=>OC=2OA

b: Xét ΔFCD có AB//CD

nên AB/CD=FA/FD=FB/FC

=>FA/FD=FB/FC=1/2

=>A là trung điểm của FD;B là trung điểm của FC

Xét ΔFDC có

CA là đường trung tuyến

DB là đường trung tuyến

CA cắt DB tại O

Do đó: O là trọng tâm của ΔFDC

7 tháng 4 2018

Tam giác AOB ~ tam giác COD 
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]

=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)

Tương tự ta cũng có tam giác IAB ~ tam giác IDC 
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2) 
Từ (1)và (2) => đpcm

Câub: 
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON 
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm

26 tháng 12 2017

B A C D E H

*Xét ΔABE và ΔACD có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AE=AD\left(gt\right)\\\widehat{A}.g\text{óc}.chung\end{matrix}\right.\)

⇒ ΔABE = ΔCAD (c - g - c)

⇒ BE = CD (hai cạnh tương ứng)

3 tháng 8 2019

O A B C D M E x y

CM: a) Ta có: OA + AB = OB (A nằm giữa O và B vì OA < OB)

           OC + CD = OD (C \(\in\)OD)

mà OA = OC (gt); AB = CD (gt) => OB = OD

Xét t/giác OCB và t/giác OAD

có: OC = OA (gt)

 \(\widehat{O}\) : chung

 OB = OD (gt)

=> t/giác OCB = t/giác OAD (c.g.c)

=> BC = AD (2 cạnh t/ứng)

b) Ta có: \(\widehat{OCB}+\widehat{BCD}=180^0\) (kề bù)

           \(\widehat{OAD}+\widehat{DAB}=180^0\) (kề bù)

mà \(\widehat{OCB}=\widehat{OAD}\) (Vì t/giác OCB = t/giác OAD) => \(\widehat{BCD}=\widehat{DAB}\)

Xét t/giác AEB và t/giác CED

có: \(\widehat{EAB}=\widehat{ECD}\) (cmt)

 AB = CD (gt)

 \(\widehat{EBA}=\widehat{CDE}\) (vì t/giác OCB = t/giác OAD)

=> t/giác AEB = t/giác CED (g.c.g)

c) Xét t/giác OBE và t/giác ODE

có: OB = OE (Cm câu a)

 EB = ED (vì t/giác AEB = t/giác CED)

 OE : chung

=> t/giác OBE = t/giác ODE (c.c.c)

=> \(\widehat{BOE}=\widehat{DOE}\) (2 góc t/ứng)

=> OE là tia p/giác của góc xOy

d) Ta có: OA = OC (gt)

=> O \(\in\)đường trung trực của AC 

Ta lại có: t/giác AEB = t/giác CED (cmt)

=> AE = CE (2 cạnh t/ứng)

=> E \(\in\)đường trung trực của AC
Mà O \(\ne\)E => OE là đường trung trực của AC

e) Ta có: OD = OB (cmt)

=> OM là đường trung trực của DB  (1)

 EB = ED (vì t/giác AEB = t/giác CED) 

=> EM là đường trung trực của DB (2)

Từ (1) và (2) => OM \(\equiv\)EM

=>  O, E, M thẳng hàng

f) Ta có: OA = OC (gt)

=> t/giác OAC cân tại O

=> \(\widehat{OAC}=\widehat{OCA}=\frac{180^0-\widehat{O}}{2}\) (1)

Ta lại có: OB = OD (cmt)

=> t/giác OBD cân tại  O

=> \(\widehat{B}=\widehat{D}=\frac{180^0-\widehat{O}}{2}\) (2)

Từ (1) và (2) => \(\widehat{OAC}=\widehat{B}\)

mà 2 góc này ở vị trí đồng vị

=> AC // BD 

20 tháng 11 2014

gọi I là trung điểm AD

xét tam giác ACD có EI là đường trung bình nên IE song song CD và bằng 1/2 CD

xét trường hợp 1 EF cắt OA tại K ko thuộc tia Ox và cắt Oy tại Q thuộc Oy

có EI song song CD nên IEF=FQD

tương tự ta có IN là đường trung bình tam giác ABD nên IF song song AB và bằng 1/2 AB 

AB=CD nên IE=IF 

tam giác IEF cân tại I

ta có IF song song AB nên IF song song OK

INK= KNI

IMN = NQD = OQK 

nên tam giác OKQ cân tại O có Ot là phân giác góc ngoài tại O nên Ot song song KQ hay song song MN

trường hợp còn lại làm tương tị

chỗ Ot là phân giác ngoài ban tự chứng minh song song đi dễ mà