Tìm GTNN hoặc GTLN của:
A=\(\dfrac{x^2-2x+2}{x^2+x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
\(A=\dfrac{2x+1}{x^2+2}\)
\(\Leftrightarrow Ax^{2\:}+2A=2x+1\)
+) \(A=0\Rightarrow x=-\dfrac{1}{2}\)
+) \(A\ne0\)
\(Ax^2+2A=2x+1\)
\(\Leftrightarrow Ax^{2\:}-2x=1-2A\)
\(\Leftrightarrow x^2-2.\dfrac{x}{A}=\dfrac{1-2A}{A}\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{A}+\dfrac{1}{A^2}=\dfrac{1-2A}{A}+\dfrac{1}{A^2}\)
\(\Leftrightarrow\left(x-\dfrac{1}{A}\right)^2=\dfrac{A-2A^2+1}{A^2}\)
\(\Leftrightarrow\left(x-\dfrac{1}{A}\right)^2=\dfrac{\left(1-A\right)\left(2A+1\right)}{A^2}\)
Vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{A}\right)^2\ge0\left(\forall x,A\ne0\right)\\A^2\ge0\end{matrix}\right.\)
⇒ \(\left(1-A\right)\left(2A+1\right)\ge0\)
⇒ \(-\dfrac{1}{2}\le A\le1\)
Còn lại tụ làm nha
\(A=\dfrac{2x+1}{x^2+2}=\dfrac{x^2+2-x^2-2+2x+1}{x^2+2}\\ =1-\dfrac{-\left(x-1\right)^2}{x^2+2}\\ Do\left(x-1\right)^2\ge0\Rightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}\ge0\\ \Rightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}=0\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x^2+2}+1\le1\)
\(Dấu"="\Leftrightarrow A=1\\ \Leftrightarrow x-1=0\Rightarrow x=1\\ Vậy.P_{max}=1.khi.x=1\\ A=\dfrac{2x+1}{x^2+2}\rightarrow2A+1=\dfrac{2.\left(2x+1\right)}{x^2+2}+1\\ =\dfrac{4x+2+x^2+2}{x^2+2}=\dfrac{x^2+4x+2}{x^2+2}=\dfrac{\left(x+2\right)^2}{x^2+2}\\ Do\left(x+2\right)^2\ge0\Leftrightarrow\dfrac{\left(x+2\right)^2}{x^2+2}\ge0\)
\(Dấu"="\Leftrightarrow A=\dfrac{1}{2}khi.x=-2\\ \Rightarrow2A+1\ge0\Rightarrow2A\ge-1\Rightarrow A>-\dfrac{1}{2}\\ Vậy.MinA=-\dfrac{1}{2}.khi.x=-2\)
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
Bài này chỉ tìm được GTLN thôi nhé bạn.
Ta thấy \(A=-\dfrac{1}{3}x^2+2x\)
\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)
\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)
\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)
Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).
\(\Rightarrow\left(A-1\right)x^2+\left(A+2\right)x+A-2=0\)
Để pt có ng0 thì \(\Delta\ge0\)
\(\Rightarrow\left(A+2\right)^2-4\left(A-1\right)\left(A-2\right)\ge0\)
\(\Leftrightarrow-3A^2+7A-4\ge0\)
\(\Rightarrow1\le A\le\frac{4}{3}\)
\(A_{min}=1\Leftrightarrow x=\frac{1}{3}\)
\(A_{max}=\frac{4}{3}\Rightarrow4\left(x^2+x+1\right)=3\left(x^2-2x+2\right)\)
Đến đây tự tìm.