gtnn của căn x trên căn x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là: \(A=\sqrt{x-2\sqrt{x-3}}\) đúng ko em?
ĐKXĐ: \(x\ge3\)
\(A=\sqrt{x-3-2\sqrt{x-3}+1+2}=\sqrt{\left(\sqrt{x-3}-1\right)^2+2}\ge\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(x=4\)
mình nghĩ bài này chắc phải có điều kiện \(x>1\),còn không thì mình cũng không biết làm thế nào\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=\sqrt{x}+2+\dfrac{3}{\sqrt{x}-1}\)
\(=\sqrt{x}-1+\dfrac{3}{\sqrt{x}-1}+3\ge3+2\sqrt{\left(\sqrt{x}-1\right).\dfrac{3}{\sqrt{x}-1}}=3+2\sqrt{3}\)
\(\Rightarrow P_{min}=3+2\sqrt{3}\) khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}-1=\sqrt{3}\left(\sqrt{x}-1>0\right)\)
\(\Rightarrow x=\left(1+\sqrt{3}\right)^2=4+2\sqrt{3}\)
\(A=x+\frac{2}{\sqrt{x}}\)
\(=x+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}\)
\(\ge3\sqrt[3]{x\cdot\frac{1}{\sqrt{x}}\cdot\frac{1}{\sqrt{x}}}=3\)
Dấu "=" xảy ra tại x=1
Vậy \(GTLN_A=3\Leftrightarrow x=1\)
A = \(\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-3+3}{\sqrt{x}+3}=1-\frac{3}{\sqrt{x}+3}\)
để A min => \(\frac{3}{\sqrt{x}+3}\) max => \(\sqrt{x}+3\) min
thấy \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\)
\(\Rightarrow\frac{3}{\sqrt{x}+3}\le1\Rightarrow1-\frac{3}{\sqrt{x}+3}\ge0\)
vậy min A = 0 khi x = 0