Câu1: SNT có là số SNT ko?
Câu2: SNT có là ước của Hợp số ko?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
ko
Vì CÁC SNT cùng nhau là các số có duy nhất 1 ước là 1
mà : 4 có 2 ước là 1;2;4
suy ra : 4 và 5 ko là SNT cùng nhau
p là snt lớn hơn 3 => p lẻ
=> 5p+1 chẵn => 5p+1 là hợp số
Vì p là snt>3.Suy ra p ko chia hết cho 3
------- p chia 3 dư 1 hoặc 2
------- p có dạng 3k+1 hoặc 3k+2
+).vs p=3k+1 ------ 5p+1=5.(3k+10)+1
=15k+6=3.(5k+2) chia hết cho 3
------5p+1>3-----5p+1 là hợp số(loại)
------p=3k+2------10p+1=10.(3k+2)+1=30k+1=3.(10k+7) chia hết cho 3
----10p+1>3 ----10p+1 là hợp số
Vì là tổng của 2 số nguyên tố ra số nguyên tố nên tổng phải là số lẻ
Mà lẻ + lẻ = chẳn nên phải có 1 số chẳn
Vậy 1 số là 2
Số còn lại sẽ là số bé nhất có thể
Nếu là 3 thì hiệu sẽ không phải là số nguyên tố
Vậy là số 5
Suy ra 2 SNT đó là 2 và 5
Nếu là số 3 thì