Cho các sô thực a,b tm a+b khác 0. CMR:\(a^2+b^2+(\frac{1+ab}{a+b})^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b là các số thực dương thỏa mãn ab+a + b = 1 .Suy ra 1 + a2 =ab + a + b + a2 = ( a+b) ( a + 1 )
1 + b2 = ab + a + b + b2 = (a + b) ( b + 1 )
Khi đó ta có :
\(vt=\frac{a}{1+a^2}+\frac{b}{1+b^2}=\frac{a}{\left(a+b\right)\left(a+1\right)}+\frac{b}{\left(a+b\right)\left(b+1\right)}=\frac{2ab+a+b}{\left(a+b\right)\left(a+1\right)\left(b+1\right)}\)
\(\frac{1+ab}{\left(a+b\right)\left(ab+a+b+1\right)}=\frac{1+ab}{2\left(a+b\right)}\)
\(vp=\frac{1+ab}{\sqrt{2\left(1+a^2\right)\left(1+b^2\right)}}=\frac{1+ab}{\sqrt{2\left(a+b\right)\left(a+1\right)\left(a+b\right)\left(b+1\right)}}\)
\(=\frac{1+ab}{\left(a+b\right)\sqrt{2\left(ab+a+b+1\right)}}=\frac{1+ab}{\left(a+b\right)\sqrt{2\left(1+1\right)}}=\frac{1+ab}{2\left(a+b\right)}\)
=> Đẳng thức được chứng minh
Em thử nha, có gì sai bỏ qua ạ.
Đề cho gọn,Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì \(xy+yz+zx=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=0\)
Và \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=0\)
Ta có: \(VT=\sqrt{x^2+y^2+z^2}=\sqrt{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}=0\) (1)
Mặt khác,ta có \(VT=\left|x+y+z\right|=0\) (2)
Từ (1) và (2) ta có đpcm
- tth_new
Dòng cuối phải là
VP=|x+y+z|=0
đúng không????
Chứng minh gì thế hả bạn?