Giúp em câu 3,4,5. Em xin cảm ơn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 He doesn't play games
2 I don't go to the art club
3 What about sitting down?
4 We are going to take part in the stamp collector's club
5 How about relaxing?
6 My favorite subject is English
7 My favorite sport is football
8 Pink and blue are my favorite colors
9 My favorite subject is English
10 My favorite sport is football
ĐKXĐ:
3.
\(x\in R\)
5.
\(sinx\ne0\Rightarrow x\ne k\pi\)
7.
\(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
Vận tốc của chất điểm:
\(v\left(t\right)=s'\left(t\right)=3t^2-6t+9=3\left(t-1\right)^2+6\ge6\)
Dấu "=" xảy ra khi \(t-1=0\Rightarrow t=1s\)
Dạ em cảm ơn rất nhiều ạ, nhưng nếu được thầy có thể giải thích giúp em làm sao ra đc :S'(t) ạ ?
\(\dfrac{1+sin^2x}{1-sin^2x}-2tan^2x=\dfrac{1+sin^2x}{cos^2x}-2tan^2x=\dfrac{1}{cos^2x}+tan^2x-2tan^2x\)
\(=\left(1+tan^2x\right)-tan^2x=1\)
a, cường độ dđ mạch
\(I=\dfrac{U}{R_{td}}=\dfrac{12}{10+5}=0,8\left(A\right)\)
\(\Rightarrow U_1=I.R_1=8\left(V\right)\)
\(\Rightarrow U_2=I.R_2=5.0,8=4\left(V\right)\)
b, \(\Rightarrow U_1=\dfrac{4}{2}=2\left(V\right)\)
\(I=I_2=\dfrac{4}{5}=0,8\left(A\right)\)
\(I_1=\dfrac{2}{10}=0,2\left(A\right)\)
\(I_3=I_2-I_1=0,6\left(A\right)\)
\(\Rightarrow R_3=\dfrac{U_1}{I_3}=\dfrac{2}{0,6}=\dfrac{10}{3}\left(\Omega\right)\)
Có: `-C_2021 ^0 +C_2021 ^1 -C_2021 ^2 +....+C_2021 ^2019-C_2021 ^2020 -C_2021 ^2021 =-1-1=-2`
Mà `C_2021 ^0 +C_2021 ^1 +C_2021 ^2 +....+C_2021 ^2019 +C_2021 ^2020 +C_2021 ^2021 =2^2021`
`=>2(C_2021 ^1 + C_2021 ^3 +C_2021 ^5 +...+C_2021 ^2017 + C_2021 ^2019 )=-2+2^2021`
`=>C_2021 ^1 + C_2021 ^3 +...+C_2021 ^2017 + C_2021 ^2019 =-1+2^2020`
ĐKXĐ:
3.
\(cos\left(3x-\dfrac{\pi}{4}\right)\ne0\Leftrightarrow3x-\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow3x\ne\dfrac{3\pi}{4}+k\pi\Rightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{3}\)
4.
\(sin\left(2x+\dfrac{\pi}{6}\right)\ne0\Leftrightarrow2x+\dfrac{\pi}{6}\ne k\pi\)
\(\Rightarrow x\ne-\dfrac{\pi}{12}+\dfrac{k\pi}{2}\)
5.
\(\left\{{}\begin{matrix}cosx\ne0\\sin3x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\3x\ne k\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne\dfrac{k\pi}{3}\end{matrix}\right.\)