cho phương trình đường tròn (Cm)x2 + y2 + (m+2)x -(m+4)y +m+1=0 . tìm các điểm cố định thuộc đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đường tròn đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m ta luôn có:
\(x_0^2+y_0^2+\left(m+2\right)x_0-\left(m+4\right)y_0+m+1=0\)
\(\Leftrightarrow m\left(x_0-y_0+1\right)+\left(x_0^2+y_0^2+2x_0-4y_0+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-y_0+1=0\\x_0^2+y_0^2+2x_0-4y_0+1=0\end{matrix}\right.\)
\(\Rightarrow x_0^2+\left(x_0+1\right)^2+2x_0-4\left(x_0+1\right)+1=0\)
\(\Rightarrow2x_0^2-2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=1\Rightarrow y_0=2\\x_0=-1\Rightarrow y_0=0\end{matrix}\right.\)
Vậy đường tròn luôn đi qua 2 điểm cố định có tọa độ \(\left(1;2\right);\left(-1;0\right)\) với mọi m
x 2 + y 2 + 4 x − 2 y − 4 = 0 và điểm M(-2; 4)
Đường tròn (C): x 2 + y 2 + 4 x - 2 y - 4 = 0 có tâm I(-2;1) và bán kính R = ( − 2 ) 2 + 1 2 + 4 = 3
Phương trình tiếp tuyến tại M(- 2; 4) và nhận I M → ( 0 ; 3 ) làm VTPT là:
0( x +2) + 3 (y – 4) = 0 hay y = 4
ĐÁP ÁN D
Đường tròn (C): x 2 + y 2 + 4 x − 2 y − 4 = 0 có tâm I(-2; 1) và bán kính R = 3.
Ta có : I M = 1 + 2 2 + 2 − 1 2 = 10 > 3 nên M nằm ngoài đường tròn.
Qua M kẻ được hai tiếp tuyến đến đường tròn.
ĐÁP ÁN C
ĐÁP ÁN B
Đường tròn (C): x 2 + y 2 - 4 x + 2 y – 4 = 0 có tâm I(2; -1) và bán kính R = 2 2 + ( − 1 ) 2 + 4 = 3
Tiếp tuyến qua M( -4; 2) và nhận n → ( a ; b ) làm VTPT có phương trình :
a( x+ 4) + b (y – 2)= 0 hay ax + by + 4a – 2b = 0 (*)
Khoảng cách từ tâm I đến tiếp tuyến bằng bán kính nên ta có:
d ( I ; d ) = R ⇔ 2 a − b + 4 a − 2 b a 2 + b 2 = 3 ⇔ 6 a − 3 b a 2 + b 2 = 3 ⇔ 2 a − b a 2 + b 2 = 1 ⇔ 2 a − b = a 2 + b 2 ⇔ 4 a 2 − 4 a b + b 2 = a 2 + b 2 ⇔ 3 a 2 − 4 a b = 0 ⇔ a ( 3 a − 4 b ) = 0 ⇔ a = 0 3 a = 4 b
* Nếu a= 0 , chọn b= 1 thay vào (*) ta có phương trình tiếp tuyến là: y – 2= 0
* Nếu 3a = 4b, chọn a = 4 thì b = 3 thay vào (*) ta có phương trình tiếp tuyến là:
4x + 3y + 10 = 0
Vậy có 2 tiếp tuyến qua M là: y – 2= 0 và 4x +3y + 10= 0
ĐÁP ÁN D
Đường tròn (C) có tâm I( -1; 3).
Do đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB nên I M ⊥ Δ ( quan hệ vuông góc đường kính và dây cung).
Đường thẳng ∆: đi qua M(-2; 1) và nhận M I → ( 1 ; 2 ) làm VTPT nên có phương trình là :
1. (x + 2) + 2(y – 1) = 0 hay x+ 2y = 0
Đường tròn đã cho có tâm I − 3 2 ; 5 2
Bán kính đường tròn là: R = − 3 2 2 + 5 2 2 + 2 = 21 2
Độ dài I M = − 2 + 3 2 2 + 1 − 5 2 2 = 5 2 < R
Do đó, điểm M nằm trong đường tròn.
Qua M không kẻ được tiếp tuyến nào đến đường tròn.
ĐÁP ÁN A
Phương trình đã cho là đường tròn khi:
\(m^2+4\left(m-2\right)^2-6>0\)
\(\Leftrightarrow5m^2-16m+10>0\)
\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{8+\sqrt{14}}{5}\\m< \dfrac{8-\sqrt{14}}{5}\end{matrix}\right.\)