cho tam giác ABC vuông cân tại A , lấy điểm D bất kỳ thuộc cạnh BC . từ B,C vẽ BI,CK vuông góc với AD tại I ,K
a, chứng minh góc ACK phụ với góc KAC , chứng minh góc BAI bằng góc ACK
b, chứng minh BI = AK
c, chứng minh [tex]BI^{2}+CK^{2}[/tex] không đổi khi D chạy trên BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC cân tại A (gt)
⇒ AB=AC
Vì BH⊥AC (gt)
⇒ ∠BHA=∠BHC=900
Vì CK⊥AB (gt)
⇒ ∠CKA=∠CKB=900
Xét ΔABH và ΔACK có:
∠BHA=∠CKA=900
∠BAC chung
AB=AC
⇒ ΔABH=ΔACK (cạnh huyền - góc nhọn)
⇒ ∠ABH=∠ACK (2 góc tương ứng)
Vậy ∠ABH=∠ACK
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABC và ΔADC có
AB=AD
góc BAC=góc DAC
AC chung
=>ΔABC=ΔADC
c: Xét ΔCBD có
DK,CH là đường cao
DK cắt CH tại I
=>I là trực tâm
=>BI vuông góc CD
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)