Cho tam giác ABC vuông tại A, biết AB : BC = 3 : 4, BC = 15 cm. Tính độ dài cạnh AB.
Em cần gấp ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 7^2+24^2=25cm
b: AB=căn BC^2-AC^2=3(cm)
c: AC=căn 25^2-15^2=20cm
Theo đè bài thì MN sẽ trùng với AB (điểm N sẽ trùng với điểm B) vậy MN = 12 - 4 = 8(cm)
Đúng thì link nhé
Độ dài cạnh AB so với cạnh BC là: \(\dfrac{3}{4}\)x \(\dfrac{4}{5}\) =\(\dfrac{3}{5}\)
Độ dài cạnh AB là: 72:(3+4+5)x3= 18(cm)
Độ dài cạnh AC là: 72:(3+4+5)x4 = 24(cm)
Diện tích tam giác ABC là: 18x24:2 = 216(\(cm^2\))
Đáp số: 216cm2
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
\(BM=\sqrt{AB^2-AM^2}=6\left(cm\right)\)
vì ABC cân tại A => AB=AC,B=C
mà AB=10cm=>AC=10cm
AB^2=AM^2+BM^2
10^2=8^2+BM^2
100=64+BM^2
BM^2=100-64
BM^2=36
=>BM=6 cm
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
\(\dfrac{AB}{BC}=\dfrac{3}{4}\\ \Rightarrow AB=\dfrac{3BC}{4}=\dfrac{3\cdot15}{4}=\dfrac{45}{4}\left(cm\right)\)