K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Chứng tỏ rằng hiệu của 1 số và tổng các chữ số của nó chia hết cho 9? Từ đó, chứng tỏ C= 8n + 111..1 ( n chữ số 1; n thuộc N* ) chia hết cho 9?

8 tháng 8 2016

trool tao à

23 tháng 10 2016

Linh ơi bài này ở đâu thế

23 tháng 10 2016

bài này ở toán buổi chiều

23 tháng 12 2015

Để 2n + 111....111 (n chữ số 1) chia hết cho 3

Thì 2n + (1+1+1+....+1) (n chữ số 1) chia hết cho 3

Tổng các chữ số của 1+1+1+....+1 (n chữ số 1) là n.1 = n 

2n + n = 3n

Vì 3n chia hết cho 3 nên 2n + 111....1 (n chữ số 1 ) chia hết cho 3 

22 tháng 10 2021

Bài 5: 

Ta có: \(3n+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;0;8;-6\right\}\)

22 tháng 10 2021

cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.

 

20 tháng 9 2019

a)Các số tự nhiên chia hết cho 9 là :450;405;540;504

b)Chia hết cho 3 mà ko chia hết cho 9:345;354;453;435;543;534

5 tháng 8 2015

3) Gọi 3 chữ số là a;b;c 

=> 123abc chia hết cho 1001 

123abc = 123.1000 + abc = 123.1001 - 123 + abc = 123.1001 + (abc - 123) chia hết cho 1001

=> abc - 123 chia hết cho 1001 => abc -123 = 1001.k => abc = 1001.k + 123

Chọn k =0 => abc = 123 

Chọn k = 1 => abc = 1124 Loại . Từ k > 1 đều không có số nào thỏa mãn

Vậy Viết thêm 3 chữ số là 1;2;3