K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

Cho H(x)=0

=>2x^2-2x=0

2x*(x-1)=0

2x=0 hoặc x-1=0

x=0+1

x=1

vậy nghiệm của đa thức 2x^2-2x là 0 hoặc 1

26 tháng 4 2018

H(x)\(=2x^2-2x\)

Giả sử H(x)=0\(\Rightarrow2x^2-2x=0\)

\(\Rightarrow2x.x-2x=0\)

\(\Rightarrow x\left(2x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy x=0 và x=1 là nghiệm của đa thức H(x)

27 tháng 4 2017

Bạn xem lại xem đề có nhầm lẫn không nhé. Mình ấn máy tính ra kết quả là số ảo nhé

27 tháng 4 2017

H(x)=2x^2+5x

nghiệm của H(x) là :

H(x)=0 khi x=0

\(2.0^2+5.0=0\)

vậy nghiệm của H(x) là 0

đúng chưa bạn nếu đúng thì kết bạn với mình nhéhaha

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

a: \(H\left(x\right)=2x^3+\dfrac{1}{3}x-13-2x^3+\dfrac{3}{2}x-9=\dfrac{11}{6}x-22\)

c: Đặt H(x)=0

=>11/6x=22

hay x=22:11/6=12

b: H(3)=11/2-22<>0

=>x=3 không là nghiệm

10 tháng 4 2017

a) \(f\left(x\right)=x^2-2x-5x^4+6\)

\(=-5x^4+x^2-2x+6\)

\(g\left(x\right)=x^3-5x^4+3x^2-3\)

\(=-5x^4+x^3+3x^2-3\)

b) \(f\left(x\right)+g\left(x\right)=-5x^4+x^2-2x+6-5x^4+x^3+3x^2-3\)

\(=-10x^4+4x^2+x^3-2x+3\)

\(f\left(x\right)-g\left(x\right)=-5x^4+x^2-2x+6+5x^4-x^3-3x^2+3\)

\(=-2x^2-x^3-2x+9\)

c) Thay x = 1 vào f(x) ta có:

\(f\left(1\right)=1-2-5+6=0\)

Vậy x = 1 là nghiệm của f(x)

d) \(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)

\(\Rightarrow h\left(x\right)=-2x^2-x+9+g\left(x\right)-f\left(x\right)\)

\(\Rightarrow h\left(x\right)=-2x^2-x+9+2x^2+x^3+2x-9\)

\(\Rightarrow h\left(x\right)=x^3+x\)

e) Ta có: \(x^3+x=0\)

\(\Rightarrow x^2\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy x = 0, x = -1 là nghiệm của H(x)

10 tháng 4 2017

Thanks nhìu nha

a: \(H\left(x\right)=-x^5+x^4-3x^3+2x^2-5x-2+x^5-x^4+3x^3-2x^2+3x+11\)

=-2x+9

Đặt H(x)=0

=>-2x+9=0

hay x=-9/2

b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)

13 tháng 4 2023

a: H(x)=−x5+x4−3x3+2x2−5x−2+x5−x4+3x3−2x2+3x+11�(�)=−�5+�4−3�3+2�2−5�−2+�5−�4+3�3−2�2+3�+11

=-2x+9

Đặt H(x)=0

=>-2x+9=0

hay x=-9/2

b: Vì H(9)<>0 nên x=9 ko là nghiệm của H(x)