Giải phương trình:
a)\(x^2-3\text{x}+1=\frac{-3}{3}\sqrt{x^4+x^2+1}\)
b)\(\sqrt{x^2+2\text{x}}+\sqrt{2\text{x}-1}=\sqrt{3\text{x}^2+4\text{x}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(3x^2-5x+1\ge0;x^2-2\ge0;x^2-x-1\ge0\)
Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3.\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\sqrt{3x^2-5x+1}-\sqrt{3\left(x^2-x-1\right)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\dfrac{3x^2-5x+1-3.\left(x^2-x-1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow\dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=0\left(∗\right)\end{matrix}\right.\)
Xét phương trình (*) ta có VT > 0 \(\forall x\) mà VP = 0
nên (*) vô nghiệm
Vậy x = 2 là nghiệm phương trình
a: Đặt \(x^2-4=a\)
Pt sẽ là \(a=3\sqrt{xa}\)
\(\Rightarrow a^2=9xa\)
\(\Leftrightarrow a\left(a-9x\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)
hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)
d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)
Pt sẽ là 2a+b=ab+2
=>(b-2)(1-a)=0
=>b=2 và 1-a
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a) ĐK: \(\left[{}\begin{matrix}x\ge0\\x\le-1\end{matrix}\right.\)
pt <=> \(\left\{{}\begin{matrix}x\ge0\\x^2+x=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x=0\left(tm\right)\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=0
b) ĐK: \(-1\le x\le1\)
pt <=> \(\left\{{}\begin{matrix}x\ge1\\1-x^2=x^2-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\2x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\2x\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x=0\left(l\right)\\x=1\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy, pt có nghiệm duy nhất là x=1
c) ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)
pt <=> \(\left\{{}\begin{matrix}x\ge2\\x^2-4x+3=x^2-4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\0=1\left(l\right)\end{matrix}\right.\)
Vậy, phương trình vô nghiệm với mọi x
a: =>x^2+x=x^2 và x>=0
=>x=0
b: =>1-x^2=(x-1)^2 và x>=1
=>1-x^2-x^2+2x-1=0 và x>=1
=>-2x^2+2x=0 và x>=1
=>-2x(x-1)=0 và x>=1
=>x=1
c: =>x^2-4x+3=(x-2)^2 và x>=2
=>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
=>PTVN
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Câu 3: đề là \(\sqrt{x+5}-\sqrt{x-2}\) hay \(\sqrt{x+5}-\sqrt{x+2}\)?
Câu 4:
ĐKXĐ: \(x\le9\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x-4}=a\\\sqrt{9-x}=b\end{matrix}\right.\) ta có hệ:
\(\left\{{}\begin{matrix}a-b=-1\\a^3+b^2=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^3+b^2=5\end{matrix}\right.\)
\(\Rightarrow a^3+\left(a+1\right)^2=5\)
\(\Leftrightarrow a^3+a^2+2a-4=0\) \(\Rightarrow a=1\)
\(\Rightarrow\sqrt[3]{x-4}=1\Rightarrow x-4=1\Rightarrow x=5\)
5.
ĐKXĐ: \(x\ge-\frac{17}{16}\)
\(\Leftrightarrow8x^2-15x-23-\left(x+1\right)\sqrt{16x+17}=0\)
\(\Leftrightarrow\left(x+1\right)\left(8x-23\right)-\left(x+1\right)\sqrt{16x+17}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8x-23=\sqrt{16x+17}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow16x+17-2\sqrt{16x+17}-63=0\)
Đặt \(\sqrt{16x+17}=t\ge0\)
\(\Rightarrow t^2-2t-63=0\Rightarrow\left[{}\begin{matrix}t=9\\t=-7\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{16x+17}=9\Leftrightarrow x=\frac{32}{3}\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
b)\(\sqrt{x^2+2x}\) + \(\sqrt{2x-1}\)= \(\sqrt{3x^2+6x-2x+1}\)( ĐKXĐ \(x\ge\frac{1}{2}\))
Đặt a=\(\sqrt{x^2+2x}\), b=\(\sqrt{2x-1}\)(\(a>0,b\ge0\)) . Khi đó phương trình trở thành :
\(a+b\)=\(\sqrt{3a^2-b^2}\)
\(\Leftrightarrow a^2+2ab+b^2=3a^2-b^2\)
\(\Leftrightarrow a^2-ab-b^2=0\)
Chia cả hai vế cho \(a^2\)-> phân tích thành nhân tử -> tìm \(\frac{a}{b}\)-> x -> thử ĐKXĐ
TÌm \(\frac{b}{a}\)nhé không phải \(\frac{a}{b}\)mk đánh máy lộn