Cho x, y thỏa mãn \(x+2y\ge5\). Tính giá trị nhỏ nhất của \(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/y thành 1/x nhé
H = x2 + 2y2 + 1/x + 24/y
H = ( x2 + 1 ) + 2 ( y2 + 4 ) + 1/x + 24/y
H \(\ge\)2x + 8y + 1/x + 24/y = ( x + 1/x ) + ( 6y + 24y ) x + 2y - 9
\(\ge\)2 + 24 + 5 - 9 = 22
Dấu " = " xảy ra khi x = 1 ; y = 2
\(H=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)
\(\ge2\sqrt{x^2.1}+2\sqrt{2y^2.8}+\frac{1}{x}+\frac{24}{y}-9\)
\(=2x+8y+\frac{1}{x}+\frac{24}{y}-9\)
\(=\left(\frac{1}{x}+x\right)+\left(\frac{24}{y}+6y\right)+x+2y-9\)
\(\ge2\sqrt{\frac{1}{x}.x}+2\sqrt{\frac{24}{y}.6y}+x+2y-9\)
\(=2+24+x+2y-9\ge26+5-9=22\)
Dấu "=" xảy ra khi x = 1; y = 2
Vậy ....
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
\(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}\)
\(\Leftrightarrow H=\left(\frac{1}{2}x^2+\frac{1}{2x}+\frac{1}{2x}\right)+\left(\frac{3}{2}y^2+\frac{12}{y}+\frac{12}{y}\right)+\left(\frac{1}{2}x^2+\frac{1}{2}\right)+\left(\frac{1}{2}y^2+2\right)-\frac{5}{2}\)
Áp dụng BĐT AM-GM ta có:
\(H\ge3.\sqrt[3]{\frac{1}{2}x^2.\frac{1}{2x}.\frac{1}{2x}}+3.\sqrt[3]{\frac{3}{2}y^2.\frac{12}{y}.\frac{12}{y}}+2.\sqrt{\frac{1}{2}x^2.\frac{1}{2}}+2.\sqrt{\frac{1}{2}y^2.2}-\frac{5}{2}=\frac{3}{2}+18+x+2y-\frac{5}{2}\ge22\)Dấu " = " xảy ra <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)( tự giải nhé )
KL:....
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2