ss
tan 80^0 va sin 50^0
tan 40^0 va cos 30^0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tử:=\dfrac{1}{2}\left[sin\left(60^o-x+30^o-x\right)+sin\left(60^o-x-30^2+x\right)\right]+\dfrac{1}{2}\left[sin\left(30^o-x+60^o-x\right)+sin\left(30^o-x-60^o+x\right)\right]\)
\(=\dfrac{1}{2}\left[2sin\left(\dfrac{\pi}{2}-2x\right)+sin\left(\dfrac{\pi}{6}\right)+sin\left(-\dfrac{\pi}{6}\right)\right]=\dfrac{1}{2}.\left[2sin\left(\dfrac{\pi}{2}-2x\right)+0\right]=sin\left(\dfrac{\pi}{2}-2x\right)=cos2x\)
\(VT=\dfrac{cos2x}{sin4x}=\dfrac{cos2x}{2sin2x.cos2x}=\dfrac{1}{2sin2x}=\dfrac{1}{4sinx.cosx}=\dfrac{\dfrac{1}{cos^2x}}{\dfrac{4sinx.cosx}{cos^2x}}=\dfrac{1+tan^2x}{\dfrac{4sĩnx}{cosx}}=\dfrac{1+tan^2x}{4tanx}=VP\)
\(tan10^0.tan80^0.tan20^0.tan70^0.tan30.tan60.tan40.tan50\)
\(=tan10.tan\left(90-10\right).tan20.tan\left(90-20\right).tan30.tan\left(90-30\right).tan40.tan\left(90-40\right)\)
\(=tan10.cot10.tan20.cot20.tan30.cot30.tan40.cot40\)
\(=1.1.1.1=1\)
a) Ta có: \(sin^2x+sin^2\left(90-x\right)=sin^2x+cos^2x=1.\)
áp dụng: A = 2
b)Ta có: \(cos\left(x\right)=-cos\left(180-x\right)\)
áp dụng: B = 0
c) Ta có: \(tan\left(x\right)\cdot tan\left(90-x\right)=\frac{sinx}{cosx}\cdot\frac{sin\left(90-x\right)}{cos\left(90-x\right)}=\frac{sinx}{cosx}\cdot\frac{cosx}{sinx}=1\)
áp dụng: C = 1
a,
Đổi `tan 12^o = cot 78^o ; tan 28^o = cot 62^o ; tan 58^o = cot 32^o`
Vì `32^o<61^o<62^o<78^o<79^15'`
`->cot 32^o>cot 61^o>cot 62^o > cot 78^o > cot 79^o15'`
`->tan 58^o>cot 61^o > tan 28^o > tan 12^o > cot 79^o15'`
b,
Đổi `sin 56^o = cos 34^o ; sin 74^o=cos 16^o`
Vì `16^o<24^o<63^o41'<67^o<85 ^o`
`->cos 16^o>cos 34^o>cos 63^o41'>cos 67^o>cos 85 ^o`
`->sin 74^o>sin 56^o>cos 63^o41'>cos 67^o>cos 85 ^o`
1.
\(\Leftrightarrow3x=k\pi\Leftrightarrow x=\frac{k\pi}{3}\)
2.
\(\Leftrightarrow cos5x=0\Leftrightarrow5x=\frac{\pi}{2}+k\pi\Leftrightarrow x=\frac{\pi}{10}+\frac{k\pi}{5}\)
4.
\(cos3x+cosx+cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
5.
\(sin6x+sin2x+sin4x=0\)
\(\Leftrightarrow2sin4x.cos2x+sin4x=0\)
\(\Leftrightarrow sin4x\left(2cos2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{4}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
6. ĐKXĐ; ...
\(\Leftrightarrow tanx+tan2x=1-tanx.tan2x\)
\(\Leftrightarrow\frac{tanx+tan2x}{1-tanx.tan2x}=1\)
\(\Leftrightarrow tan3x=1\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)
a)\(sin^2\left(180^o-\alpha\right)+tan^2\left(180-\alpha\right).tan^2\left(270^o+\alpha\right)\)\(+sin\left(90^o+\alpha\right)cos\left(\alpha-360^o\right)\)
\(=sin^2\alpha+tan^2\alpha.cot^2\alpha+cos\alpha cos\alpha\)
\(=sin^2\alpha+cos^2\alpha+\left(tan\alpha cot\alpha\right)^2=1+1=2\).
\(\dfrac{cos\left(\alpha-180^o\right)}{sin\left(180^o-\alpha\right)}+\dfrac{tan\left(\alpha-180^o\right)cos\left(180^o+\alpha\right)sin\left(270^o+\alpha\right)}{tan\left(270^o+\alpha\right)}\)
\(=\dfrac{cos\left(180^o-\alpha\right)}{sin\left(180^o-\alpha\right)}+\dfrac{-tan\left(180^o-\alpha\right).cos\alpha.sin\left(90^o+\alpha\right)}{-tan\left(90^o+\alpha\right)}\)
\(=tan\left(180^o-\alpha\right)+\dfrac{tan\alpha.cos\alpha.cos\alpha}{cot\alpha}\)
\(=-tan\alpha+tan^2\alpha cos^2\alpha\)
\(=tan\alpha\left(-1+tan\alpha cos^2\alpha\right)\)
\(=tan\alpha\left(sin\alpha cos\alpha-1\right)\).
a/ \(\Leftrightarrow\cos\left(\frac{\pi}{7}-3x\right)=\cos\left(-\frac{5}{6}\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{\pi}{7}-3x=-\frac{5}{6}\pi+k2\pi\\\frac{\pi}{7}-3x=\frac{5}{6}\pi+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{41}{126}\pi-\frac{2}{3}k\pi\\x=-\frac{29}{42}\pi-\frac{2}{3}k\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow\sin\left(90^0-\frac{x}{3}\right)=\sin\left(2x+30^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}90^0-\frac{x}{3}=2x+30^0+k180^0\\90^0-\frac{x}{3}=180^0-2x-30^0+k180^0\end{matrix}\right.\Leftrightarrow...\)
c/ \(DKXD:\cos\left(30^0-2x\right)\ne0\Leftrightarrow30^0-2x\ne90^0+k180^0\Leftrightarrow x\ne-30^0-k90^0\)
\(\Leftrightarrow30^0-2x=60^0+k180^0\Leftrightarrow x=-15^0-k90^0\left(tm\right)\)
d/ \(DKXD:\sin\left(30^0-2x\right)\ne0\Leftrightarrow30^0-2x\ne k180^0\Leftrightarrow x\ne15^0-k90^0\)
\(\Leftrightarrow30^0-2x=30^0+k.180^0\Leftrightarrow x=-k.90^0\left(tm\right)\)
a: \(\tan80^0>\sin80^0>\sin50^0\)
b: \(\tan40^0< \sin40^0< \sin60^0=\cos30^0\)