K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

https://lazi.vn/edu/exercise/nhan-dang-tam-giac-abc-biet-a-2bcosc-b3-c3-a3-b-c-a-a2

NV
10 tháng 1 2022

Gọi O là trung điểm AH, tam giác AHN vuông tại N nên N thuộc đường tròn đường kính AH

Do ABC cân tại A \(\Rightarrow\) AM là đường cao đồng thời là trung tuyến

\(\Rightarrow\) M là trung điểm BC

Trong tam giác vuông NBC, NM là trung tuyến ứng với cạnh huyền

\(\Rightarrow MN=MB=\dfrac{1}{2}BC\Rightarrow\Delta MNB\) cân tại M

\(\Rightarrow\widehat{MNB}=\widehat{MBN}\) (1)

Tương tự, trong tam giác vuông ANH, ta có: \(ON=OH=\dfrac{1}{2}AH\Rightarrow\widehat{ONH}=\widehat{OHN}\) 

Mà \(\widehat{OHN}=\widehat{MHB}\) (đối đỉnh)  \(\Rightarrow\widehat{ONH}=\widehat{MHB}\) (2)

Lại có tam giác HBM vuông tại M \(\Rightarrow\widehat{MHB}+\widehat{MBN}=90^0\) (3)

(1);(2);(3) \(\Rightarrow\widehat{ONH}+\widehat{MNB}=90^0\) hay \(MN\perp ON\)

\(\Rightarrow MN\) là tiếp tuyến của đường tròn đường kính AH

NV
10 tháng 1 2022

undefined

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
a.

Do tam giác $ABC$ cân tại $A$ nên $AB=AC$

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$AM$ chung

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{BAM}=\widehat{CAM}$. Mà $AM$ nằm giữa $AB, AC$ nên $AM$ là tia phân giác $\widehat{BAC}$

Cũng từ tam giác bằng nhau phần a suy ra:
$\widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=180^0:2=90^0$

$\Rightarrow AM\perp BC$

c.

$AM\perp BC, M$ là trung điểm $BC$ nên $AM$ là đường trung trực của $BC$

$\Rightarrow$ mọi điểm $E\in AM$ đều cách đều 2 đầu mút B,C (theo tính chất đường trung trực)

$\Rightarrow EB=EC$

$\Rightarrow \triangle EBC$ cân tại $E$.

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Hình vẽ:

23 tháng 11 2018

A B C D M

a) Xét tam giác DAB và tam giác DAC có :

ABD = ACD ( = 900 )

AD chung

AB = AC ( gt )

=> tam giác DAB = tam giác DAC ( ch - cgv )

=> đpcm

b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )

=> BD = CD ( 2 cạnh tương ứng )

=> tam giác BDC cân tại D ( đpcm )

c) Ta có :

+) AB = AC => A thuộc đường trung trực của BC (1)

+) BM = MC => M thuộc đường trung trực của BC (2)

+) BD = CD => D thuộc đường trung trực của BC (3)

Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )

23 tháng 11 2018

*Link ảnh(nếu như olm không hiện):Ảnh - by tth

Ảnh (nếu olm ko hiện)

a) Xét tam giác DAB và tam giác DAC có:

AB = AC (gt)

AD (cạnh chung - cũng là cạnh huyền)

\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)

Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)

b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)

Do đó \(\Delta DBC\) cân (tại D)

c) Bạn Trần Phương  đã làm =))

26 tháng 4 2017

A B C M

a/ Câu này không chỉ có 1 cách mình trình bày!

Xét tam giác ABM và tam giác ACM có:

   góc BAM = góc CAM (gt)

   AM: chung

  AB = AC (tam giác ABC cân tại A)

=> tam giác ABM = tam giác ACM (c.g.c)

b/ Vì tam giác ABC cân tại A => AM vừa là đường phân giác vừa là đường cao

PS: Học tính chất tam giác cân là làm được

9 tháng 4 2020

Cảm ơn

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED
=>BA=BE và DA=DE

=>BD là trung trực của AE

c: Xét ΔDAK vuông tạiA và ΔDEC vuông tại E có

DA=DE

góc ADK=góc EDC

=>ΔDAK=ΔDEC

=>DK=DC

=>ΔDKC cân tại D