K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Bn lm đc câu này chưa ak. Nếu bn lm r thì chụp mk xem vs nhé

Chọn B

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

1.

Gọi $L$ là giao $BM, CN$ thì $L$ là trọng tâm tam giác $ABC$.

Áp dụng công thức đường trung tuyến:

$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}$

$CN^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}$$BL^2=\frac{4}{9}BM^2=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2$

$NL^2=\frac{1}{9}CN^2=\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$

Theo cong thức Pitago:

$BN^2=BL^2+NL^2$

$\Rightarrow \frac{c^2}{4}=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2+\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$

$\Rightarrow $5a^2=b^2+c^2$ hay $b^2+c^2=45$

Áp dụng công thức cos:

$a^2=b^2+c^2-2bc\cos A=b^2+c^2-\sqrt{3}bc$

$\Rightarrow 9=45-\sqrt{3}bc\Rightarrow bc=12\sqrt{3}$

$S_{ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}.12\sqrt{3}.\sin 30=3\sqrt{3}$

Đáp án A.

 

 

 

$b=

 

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

2.

\(R_{ABC}=\frac{abc}{4S_{ABC}}=\frac{3bc}{4S}=\frac{3.12\sqrt{3}}{4.3\sqrt{3}}=3\)

Đáp án B.

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác

NV
23 tháng 8 2021

\(\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{3}\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}\)

\(AB.AC=32\sqrt{6}\Rightarrow\dfrac{AC^2\sqrt{6}}{3}=32\sqrt{6}\)

\(\Rightarrow AC^2=96\Rightarrow AC=4\sqrt{6}\)

\(\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}=8\)

Kẻ đường cao AD ứng với BC

Do \(C=45^0\Rightarrow\widehat{CAD}=90^0-45^0=45^0\Rightarrow\Delta ACD\) vuông cân tại D

\(\Rightarrow AD=CD=\dfrac{AC}{\sqrt{2}}=4\sqrt{3}\)

Pitago tam giác vuông ABD:

\(BD=\sqrt{AB^2-AD^2}=4\)

\(\Rightarrow BC=CD+BD=4+4\sqrt{3}\)

\(cosB=\dfrac{BD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow B=60^0\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.4\sqrt{3}.\left(4+4\sqrt{3}\right)=...\)

NV
23 tháng 8 2021

undefined

NV
12 tháng 9 2021

Tam giác ABC là tam giác đều?

Nếu ABC đều thì \(\left|\overrightarrow{BM}\right|=BM=\dfrac{a\sqrt{3}}{2}\)

Chọn C