K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x)               =>P(x)=(x-2).A(x)+5  (1)      và P(x)=(x-3).B(x)=7 (2)                               Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x)           Ta có : (x-2)(x-3) có bậc là 2 =>  R(x) có bậc là 1 => R(x) có dạng ax+b  (a,b là số nguyên )                                                             =>R(x)=(x-2)(x-3).C(x)+ax+b  (3)                                                         thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5                                            thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7                                         => a=2,b=1 =>R(x)=2x+1                                                                      Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

14 tháng 2 2020

Áp dụng định lý Bezout ta được:

\(f\left(x\right)\)chia cho x+1 dư 4 \(\Rightarrow f\left(-1\right)=4\)

Vì bậc của đa thức chia là 3 nên \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)q\left(x\right)+ax^2+bx+c\)

\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+\left(ax^2+a\right)-a+bx+c\)

\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left[\left(x+1\right)q\left(x\right)+a\right]+bx+c-a\)

Vì \(f\left(-1\right)=4\)nên \(a-b+c=4\left(1\right)\)

Vì f(x) chia cho \(x^2+1\)dư 2x+3 nên

\(\hept{\begin{cases}b=2\\c-a=3\end{cases}\left(2\right)}\)

Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a+c=6\\b=2\\c-a=3\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{9}{2}\end{cases}}}\)

Vậy dư f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là \(\frac{3}{2}x^2+2x+\frac{1}{2}\)

2 tháng 1 2018

Cho abc thuộc N* thỏa mãn a^2+b^2=c^2+d^2.cmr :a+b+c+d là hợp số

22 tháng 1 2018

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)

Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)

\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)

Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)

Ta cũng có:

\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)

Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)

Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\)  và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)

Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5

22 tháng 7 2018

Phần (c-b)x sai phải là (c-b+a-ax)x