Một người đi xe đạp từ A và B cách nhau 20km trong một thời gian đã định. Sau khi đi được 1h với vận tốc dự định, người đó giảm vận tốc đi 2km/h trên quãng đường còn lại, nên đã đến B chậm 15 phút so với dự định. Tính vận tốc dự định của người đi xe đạp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáp án là 10km/h
Gợi ý: ta có pt là
20/a + 1/4 = 1 + (20-a)/(a-2)
Trong đó:
a là vận tốc dự định
20/a là thời gian dự định
1/4 là 15p
(20-a)/(a-2) là thời gian đi trong quãng đường còn lại
Khai triển pt ta sẽ có:
4(a^2-40) = 3(a^2-2a)
<=>4a^2-160 = 3a^2 - 6a
<=>a^2 + 6a = 160
<=>a^2 + 6a - 160= 0
<=>a^2 + 16a - 10a - 160= 0
<=>a(a +16) - 10(a +16) = 0
<=>(a +16)(a -10) = 0
+Hoặc a +16 =0 <=> a= -16(loại vì vận tốc luôn luôn dương)
+Hoặc a -10 =0 <=> a= 10 (nhận)
Vậy vận tốc dự định của người đi xe đạp là 10km/h
Gọi vận tốc dự định đi của người đó là x (km/h) (x > 0)
Thời gian dự định đi của người đó là 36/x (h)
Thời gian người đó đi nửa quãng đường đầu là 18/x (h)
Nửa quãng đường sau người đó đi với vận tốc là x + 2 (km/h) và thời gian người đó đi là 18/(x+2) (h)
Vì nghỉ lại 30 phút nên thời gian đi từ lúc xuất phát đến khi tới B là 18 x + 1 2 + 18 x + 2
Do người đó đến B chậm hơn dự kiến 12 phút = 1/5h nên ta có phương trình:
Vậy vận tốc của người đi xe đạp trên đoạn đường cuối của đoạn AB là 12 km/h
Đáp án: A
Gọi vận tốc dự định của người đi xe đạp là x(km/h)
(Điều kiện: x>0)
Thời gian dự kiến sẽ đi hết quãng đường là \(\dfrac{20}{x}\left(h\right)\)
Vận tốc sau khi giảm đi 2km/h là:
x-2(km/h)
Sau 1h thì xe đạp đi được: 1*x=x(km)
Độ dài quãng đường còn lại là 20-x(km)
Thời gian thực tế đi hết quãng đường là:
\(1+\dfrac{20-x}{x-2}\left(h\right)\)
Vì người đó đi chậm hơn dự định 30p=0,5h nên ta có:
\(1+\dfrac{20-x}{x-2}-\dfrac{20}{x}=0,5\)
=>\(\dfrac{20-x}{x-2}-\dfrac{20}{x}=\dfrac{-1}{2}\)
=>\(\dfrac{x\left(20-x\right)-20\left(x-2\right)}{x\left(x-2\right)}=\dfrac{-1}{2}\)
=>\(\dfrac{20x-x^2-20x+40}{x\left(x-2\right)}=\dfrac{-1}{2}\)
=>\(\dfrac{x^2-40}{x\left(x-2\right)}=\dfrac{1}{2}\)
=>\(2\left(x^2-40\right)=x\left(x-2\right)\)
=>\(2x^2-80-x^2+2x=0\)
=>\(x^2+2x-80=0\)
=>\(\left(x+10\right)\left(x-8\right)=0\)
=>\(\left[{}\begin{matrix}x+10=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\left(loại\right)\\x=8\left(nhận\right)\end{matrix}\right.\)
Vậy: vận tốc dự định là 8km/h
Gọi x ( km/h ) là vận tốc dự định của người đó
( x > 0 )
+ Thời gian người đó dự định đi hết QĐ AB là :
\(\frac{20}{x}\) ( h )
Trong 1 h người đó đi đc : x ( km)
+ Vận tốc của người đó trên QĐ còn lại là :
x - 2 ( km/h )
Quãng đg người đó đi vs vận tốc x - 2 km/h là :
20 - x ( km )
Thời gian người đó đi 20 - x ( km ) còn lại là :L
\(\frac{20-x}{x-2}\) ( h )
+ Ta có pt : \(\frac{20-x}{x-2}+1-\frac{20}{x}=0,25\)
\(\Leftrightarrow\frac{x\left(20-x\right)+x\left(x-2\right)-20\left(x-2\right)}{x\left(x-2\right)}=\frac{1}{4}\)
\(\Leftrightarrow4\left(40-2x\right)=x^2-2x\)
\(\Leftrightarrow x^2+6x-160=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+16\right)=0\)
\(\Leftrightarrow x=10\) ( TM )
Vậy vận tốc dự định của người đi xe đạp là 10 km/h