K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2018

\(\left|x^2+\left|x-1\right|\right|=x^2+2\)

\(\Leftrightarrow x^2+\left|x-1\right|=x^2+2\)

\(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x-1=-2;x=-1\\x-1=2;x=3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2023

Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:

$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$

Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$

$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$

Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$

19 tháng 4 2017

1234567890

9876543210

k tui và kb nhé

tạm biệt các bạn

19 tháng 4 2017

a) x = 2 hoặc x = -2

b) x 1 hoặc x = -1

- Ủng hộ -

22 tháng 9 2023

(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0

Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0

x + y = 13 và x - y = 6

x = (13 - 6) : 2 = 3,5

y = 13 - 3,5 = 9,5

Vậy x = 3,5 và y = 9,5

22 tháng 9 2023

(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0

(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)

(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)

 

22 tháng 9 2023

(\(x\) -13 +y)2 + (\(x\) - 6 - y)2 = 0

(\(x-13+y\))2 ≥0; (\(x\) - 6 - y)2 ≥ 0∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x-6-y\))2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ -13 - 6 + 2\(x\) = 0 ⇒ \(x\) = \(\dfrac{19}{2}\) ⇒ y = \(\dfrac{19}{2}\) - 6 ⇒ y = \(\dfrac{7}{2}\)

Vậy (\(x\);y) = (\(\dfrac{19}{2}\)\(\dfrac{7}{2}\))

23 tháng 9 2023

\(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0\left(1\right)\)

Ta có :

\(\left\{{}\begin{matrix}\left(x-13+y\right)^2\ge0,\forall x;y\in R\\\left(x-6-y\right)^2\ge0,\forall x;y\in R\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-13+y\right)^2=0\\\left(x-6-y\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=19\\y=x-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6=\dfrac{7}{2}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\) thoả mãn đề bài

Sửa đề: (x-3)(x+5)-(x-2)(x+2)+(x-2)^2+(x+3)^2-2(x-1)(x+1)

\(=x^2+2x-15-x^2+4+x^2-4x+4+\left(x+3\right)^2-2\left(x^2-1\right)\)

\(=x^2-2x-7+x^2+6x+9-2x^2+2\)

=4x+4

3 tháng 3 2020

pt <=> \(\frac{2}{\left|x-2\right|+2}=\frac{3}{3\left|2-x\right|+1}\)

<=> \(6\left|2-x\right|+2=3\left|x-2\right|+6\)

<=> \(3\left|x-2\right|=4\)( vì | x - 2 | = | 2 - x | )

<=> \(\left|x-2\right|=\frac{4}{3}\)

TH1: \(x-2=\frac{4}{3}\)

<=> \(x=\frac{10}{3}\)

TH2: \(x-2=-\frac{4}{3}\)

<=> \(x=\frac{2}{3}\)

Vậy x = 10/3 hoặc x = 2/3

3 tháng 3 2020

thank